

Esri International User Conference | San Diego, CA Technical Workshops | 07/13/2011

System Architecture for Large Image Services

Vinay Viswambharan

Agenda

- Mosaic Datasets to Manage data
- GIS Image Architecture
- Image Access Patterns
- Performance factors
- Storing imagery data storage systems
- Network Tuning and optimization
- Formats
- Memory recommendations
- Web platform configuration strategies
- Organizing Mosaic Datasets (configurations)
- Open Discussion / Q & A

Data Management

processing...

intermediate data..

Issues faced

- Multiple sources
- Multiple formats
- Increasing bit depths and bands

- Metadata
- Different kinds of processing requirements
- Redundant intermediate data

Mosaic Dataset

- Catalog\Library of imagery & associated metadata
- Stored in the Geodatabase
- Massively scalable
- Reference original pixels from file or database
- Apply on-the-fly processing
- Automation GP tools/ArcObjects
- Accessible as:
 - Image Dynamically mosaiced and processed
 - Catalog Geometry and metadata

GIS Imagery data Architecture

ArcGIS Image Access Patterns

Three patterns for Image Access

MapServer layer, Map Cache, world

performance

imagery, bing..

Dynamic

- Server rendered requests
- Changeable compression, mosaic method, projection
- Image Services
- WMS
- WCS

Optimizing Systems Architecture

Factors to consider / Impact

- CPU / High
- RAM / High
- WAN uplink / High
- LAN / Medium
- Disk Speed / Medium
- Shared Storage / Medium
- Load Balancer / Medium
- Web Application Server / Medium
- Operating System / Medium
- Data Source / Medium

ulton County Dept. of Health and Wellness/District 3, Unit 2.

Storing Imagery Data

Disk Storage technology Disk Storage platform architecture

Disk Storage technology

Attribute	SAS	SATA	Solid State	RAM Disk
Performance	High	Medium	Very High	Very High
Supported disk speeds	15K, 10K, 7.2K RPM	7.2K, 5.4K RPM	No moving parts (no RPM)	No moving parts (no RPM)
Capacities	High, but dependent on disk speeds	High	Low	Very Low
Power consumptions	Consumes more power than the equivalent SATA.	Consumes less power than SAS due to slower RPM speeds	Consumes less power than the magneto- mechanical drives such as SAS and SATA	Based on consumption of system memory
Cost	More expensive than SATA	Lowest dollar per gigabyte	More expensive than SAS and SATA	Highest dollar per gigabyte

Disk Storage platform architecture

- DAS (Direct Attached Storage)
 - Immediately attached to a host system
- NAS (Network Attached Storage)
 - Shared storage effective in enterprise (various servers)
- SAN (Storage Area Network)
 - Provide storage to remote machines (presented as local storage)

Direct Attached Storage (DAS)

- Single Storage device to single host
- Medium performance and scalability (compared to a SAN)
- SCSI and FC I/O protocols
- Apt for Small businesses
- Simple and inexpensive
- Easy to install and expand
- Imaging applications, file servers, web servers.....

Network Attached Storage (NAS)

- Multiple hosts connected to shared drives
- Medium performance (limited to bandwidth)
- Apt for Medium to enterprise size organizations (Data Centers)
- Not as scalable as a SAN
- More expensive to implement (than a DAS).
- Easier to implement and manage as opposed to a SAN
- Features Snapshot backup, easy expandibility, data replication..
- Imaging applications, file servers, web servers.....
- Works across all OS's (heterogeneous OS) simultaneously

Storage Area Network (SAN)

- Single host per Logical UNit (multiple LUN's to a single processor possible)
- High performance
- ISCSI and FC (HBA's) I/O protocols
- Apt for Enterprise Sized businesses
- Highly scalable
- Expensive to deploy\manage
- Variety of failover\fault tolerance features
- High speed fiber channel communication
- Managing multiple disks single point of control
- High bandwidth video streams, Imaging\transaction processing..

ulton County Dept. of Health and Wellness/District 3, Unit 2.

Network – Tuning and Optimizing

Application types and network load Factors affecting Network Load LAN Performance WAN Performance

Application Types and Network Load

- Rich Client applications
- RCA via Citrix(image)
- RCA via Citrix(Vector)
- Web Apps (Dynamic)
- Web Apps (Cached)
- Services (REST)
- Services (SOAP)
- Mobile Apps

- Heavy Load (10 Mb per display)
- Medium (5 Mb)
- Light (3 Mb)
- Medium (2 Mb)
- Medium (1 Mb)
- Medium (2 Mb)
- Medium (3 Mb)
- Light (0.05 Mb)

Factors affecting Network Load

- Internet browser caching policy
- Percent of new users
- Image Size
- Image Format
- Blending Location

Recommended throughput capabilities for LAN components:

- Clients 100 Mbit/sec
- Servers 1 Gbit/sec

WAN Performance

- Key performance consideration:
 - Bandwidth
 - Latency
 - Network connections (Satellite, ground, ISDN)
- Other components to improve throughput
 - Netscaler
 - Branchrepeater (formerly WANScaler)
 - Acceleration service providers (Akamai)

Memory recommendations

Too many instances per server can exhaust memory

- Increased paging when not enough memory
- Slower processing due to shared compute resources
- Peak throughput at 3-5 instances per core is acheived
- Too few instances per server
 - Can limit utilization of host hardware
 - Minimum of 3 instances per core recommended
- Provide sufficient memory to support optimum performance
 - Minimum of 3 GB memory per core

Number Of Instances

recommended More memory may berequired when using large file data sources

Formats

- Faster reading
 - Tiff, Raw
- Tiled formats optimize disk access
 Tiled Tiff
- Compression formats less CPU intensive formats
 Jpeg, LZW
- Define overviews on the mosaic dataset

Formats

- Tiled TIFF with JPEG compression
- TIFF raw large* files are 20 percent slower.
- MrSID Approximately 50 percent slower.
- JPEG 2000 Approximately 75 percent slower.
- IMG with RRD Approximately 50 percent slower.
- JPEG large* files are 400 percent slower.

*A large file is approximately 10000 x 10000 pixels, uncompressed; this is approximately a 100 MB panchromatic (one-band) image or a 300 MB color (three-band) image.

Fulton County Dept. of Health and Wellness/District 3, Unit 2.

Web Platform Configuration Strategies

Single Tier Architectures Two Tier Architectures

ArcGIS Image Extention – Single Tier Architecture

Data Source

Data Source

AGS Image Extension Data Source

ArcGIS Image Extention – Two Tier Architecture

High-Availability Configuration Multiple Servers

Patterns to Manage Imagery

Simple Collection

Multiple

- Files
- Format
- Projections
- Cascaded Mosaic

Multi-Source Collection

Mosaic of Mosaics, each managed separately

Reference Mosaics

Mosaics derived from Mosaics

- Additional processes
- Queries
- Properties

Simplify derived product

Reduces redundancy

Add NDVI Process

Where Sensor = QuickBird

Where Sensor = Landsat and Cloud <10% and Intersect with Spain

Summary

- Mosaic Datasets to Manage data
- Image Access Patterns
- Performance factors
- Storing imagery data storage systems
- Network Tuning and optimization
- Formats
- Memory recommendations
- Web platform configuration strategies
- Organizing Mosaic Datasets (configurations)

http://wiki.gis.com/wiki/index.php/System_Design_Strategies

DeKalb County Beam of M

fulton County Dept. of Health and Wellness/District 3, Unit 2, c

Questions?