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Agenda

• Getting Started
• Objective-C basics
• Common design patterns
• API Key Concepts

- Viewing maps
- Performing Analysis
- Collecting Data

• Q&A



ArcGIS - A Complete Geographic Information System
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ArcGIS Web & Mobile APIs
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ArcGIS API for iOS

• Build native applications using Objective-C
- iPhone 3GS, iPhone 4, iPod Touch, iPad
- iOS 3.1.2 and up



Web or Native applications?

• ESRI supports both

• Advantages of native applications
- Tighter integration with other native apps
- Access to resources

- Contacts, calendar events, photos
- Marketing/Hosting/Reporting via AppStore

• Disadvantages
- Dedicated effort to write and maintain



DEMO



Before you begin..

• You need an Intel-based Mac
running OSX 10.6 
(Snow Leopard)

• Join Apple’s iOS Developer Program
- Standard : AppStore distribution
- Enterprise : In-House distribution

• Download  Apple’s iOS SDK (4.2.x) 
& Xcode IDE (4.0.x)

• ArcGIS API for iOS v2.0
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Objective-C

• Its C
- Semicolons and curly braces
- Pointers (uh-oh)

• But not your average C
- colons and square brackets too
- A different syntax

• Thankfully, Cocoa Touch frameworks provide elegant 
APIs



Objective-C basics

• Class = Interface + Implementation

- MyController.h

- MyController.m

@interface MyController: UIViewController {
// private variables here

}
// method declarations here

@end

@implementation MyController
// method implementations here
@end



Objective-C basics
Contd.

• Protocol
- Declaring a Protocol

- Adopting a protocol

@protocol UIApplicationDelegate
@required
// method definitions here

@optional
// method definitions here

@end

@interface MyDelegate: NSObject <UIApplicationDelegate> { 
}
@end



Objective-C basics
Contd.

• Invoking methods   =  passing messages to objects

[foo alloc];foo.alloc();

foo.alloc().init(); [[foo alloc] init];

[point setCenter:c];point.setCenter(c);

point.set(x,y); [point setX:x andY:y];

[                  ][ object           ][ object  message  ]

C# / Java Objective-C

object.alloc(); [object  alloc];

object.alloc().init(); [[object  alloc] init];

object.setExtent(initExtent); [object  setExtent: initExtent];

object.addLayer(layer, name); [object addLayer: layer withName: name];



Objective-C Basics
Contd.

• Messages are read like English
- presentViewController:

- writeToFile:
- layerFailedToLoad:

• Can get verbose
gestureRecognizer:shouldRecognizeSimultaneouslyWith
GestureRecognizer:



Objective-C basics
Contd.

• Garbage collection is for kids,
real developers manage their own memory

• You own an object if you
- alloc
- retain
- Or, copy

• If you own an object, you’re 
responsible for releasing it

MyObject* foo = [MyObject alloc];

[foo release];

[foo copy];

[foo retain];



Objective-C basics
Contd.

• Properties make memory management easy’ier
• Syntactic sugar – dot notation

@interface MyController: UIViewController {
MyObject* _foo;

}
@property (nonatomic, retain) MyObject* foo

@end

@implementation MyController

@synthesize foo= _foo;

@end

myController.foo = bar; //bar automatically retained
myController.foo = nil; //bar automatically released

Monitor memory footprint with Instruments
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Common design patterns

• Model – View – Controller

Model
View

Controller



Common Design Patterns
Contd.

• Delegation

WindowDelegate

windowShouldClose?

YES
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What you can do with the API

• Display maps

• Perform analysis

• Visualize results

• Collect data



Displaying a  Map

• UI Component : AGSMapView

- Responds to gestures
- Pinch to zoom
- Drag to pan
- Tap & Hold to magnify

- Displays GPS location
- Auto pan 



Adding data to your map

• Mashup layers 
- ArcGIS Server Tiled map
- ArcGIS Server Dynamic map
- ArcGIS Server Image
- Bing, 

- Open Street Map

- Graphics
- Sketch

• Open web maps
- ArcGIS.com

- ArcGIS Portal



Display a map

DEMO



Respond to Map events through Delegates
Map Delegates

• Layer Delegate
- Map/Layer loaded, failed to load
- <AGSMapViewLayerDelegate>

• Touch Delegate
- Tap, Double Tap, Tap and Hold
- <AGSMapViewTouchDelegate>

• Callout Delegate
- Did Show Callout, Did Click Accessory Button
- <AGSMapViewCalloutDelegate>



Responding to Map Touch events
1. Adopt the Delegate protocol

@interface MyController: UIViewController <AGSMapViewTouchDelegate> {
}

2. Implement the protocol methods

@implementation MyController

- (void) mapView:(AGSMapView*) mapView
didClickAtPoint:(CGPoint) screen

mapPoint:(AGSPoint*) mappoint
graphics:(NSDictionary*) graphics {

//handle touch event
}

3. Set Delegate

self.mapView.touchDelegate = self;



Displaying GPS location

DEMO



Performing Analysis
Using Tasks

• Query, Find, Identify Task
- Search for features In the map

• Geoprocessing Task
- Spatial analysis using GP tools and models

• Locator
- Geocode and reverse geocode addresses



Performing Analysis
Contd.

• Geometry Engine
- native, high performance engine for performing 

geometric operations on the device

• Routing Task
- Point-to-point and multipoint driving directions
- Barriers, Time Windows, Best Sequence

• Closest Facility Task
- Find nearest facility

• Service Area Task
- Compute drive times and service areas



Common Pattern for using Tasks
1. Adopt the Task Delegate protocol

- (void)locator:(AGSLocator*)locator 
operation:(NSOperation*)op 

didFindLocationsForAddress:(NSArray*)candidates {
//todo

}

- (void)locator:(AGSLocator*)locator 
operation:(NSOperation*)op 

didFailLocationsForAddress:(NSError*)error {
//todo

}

@interface MyController: UIViewController <AGSLocatorDelegate> {
}

2. Implement the protocol methods



Common Pattern for using Tasks
3. Instantiate the task

self.locator = 
[AGSLocator locatorWithURL:[NSURL URLWithString:kGeoLocatorURL]];

4. Set Delegate

self.locator.delegate = self;

5. Perform operation

NSOperation* op = 
[self.locator locationsForAddress:addresses returnFields:outFields];



Visualizing Results

• Graphics
- Geometry
- Attribute
- Symbol

• Symbols
- Picture, Marker, Line, Fill
- Composite
- Text 



Visualizing Results
Contd.

• Renderers
- Simple
- Unique Value 
- Class Breaks
- Temporal



Visualizing Results
Contd.

• Callout
- Displayed automatically

when user taps on a 
graphic

• Content
- Title & Detail
- Image
- Accessory button
- Custom UI View 



Specifying Content for the Callout
1. Adopt the Delegate Protocol

@interface MyController: UIViewController <AGSInfoTemplateDelegate> {
}

2. Implement the protocol methods

@implementation MyController

- (NSString *) titleForGraphic:(AGSGraphic*)graphic
screenPoint:(CGPoint)screen

mapPoint:(AGSPoint*)map {
//todo

}
- (NSString *) detailForGraphic:(AGSGraphic*)graphic

screenPoint:(CGPoint)screen
mapPoint:(AGSPoint*)map {

//todo
}

3. Set the delegate on the graphic

AGSGraphic *graphic = ...
graphic.infoTemplateDelegate = self;



Using Tasks and Visualizing Results

DEMO



Collecting Data
Using Feature layers & Popups

• Feature Layers edit data through
Feature Services

• Popups provide UI to
- Display and edit attributes
- Manage attachments
- View charts, media

• Popups configured through web maps
- Attributes to display & edit
- User friendly aliases and hints
- Formatting for numbers, dates



Collecting Data

• Edit feature
- Attributes
- Geometry
- Attachments

Using Popups



Editing Attributes

• Input based on field
data type

• Support for

- Subtypes

- Domains

• Validation

- Length

- Numeric range

Using Popups



Managing Attachments
Using Popups

• View & Download

• Add

• Delete



Editing Geometry

• Use GPS location

• Use Sketch Layer
- Interactively create & reshape geometries
- Point, line, polygon
- Undo, redo changes



Editing with Popups

Demo



Application Based on Device Type

• iPhone / iPod Touch

• iPad

• Universal app
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• Getting Started
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More Resources

• iOS Resource Center
- Conceptual help, API Reference
- Blog, Forums
- Download API v2.0

• Samples on ArcGIS.com
- ArcGIS for iOS Developer Samples group

• Web Course : Getting Started with the ArcGIS API for iOS
- training.esri.com



Related Sessions

• Wednesday, July 13th

- 3:15pm – 4:30pm – ArcGIS for iOS (31b)

• Thursday, July 14th

- 10:40am – 11:00am – Road Ahead – ArcGIS for iOS (6b)
- 1:30pm – 2:45pm - Esri Mobile Solutions Overview (15a)
- 10:40am – 11:00am – Road Ahead – ArcGIS for iOS (6b)

• Friday, July 15th

- 9:00am – 10:15am – ArcGIS for iOS (10)
- 9:00am – 10:15am – Esri Mobile Solutions Overview (4)



Thank You

Help make this session better…

… Turn in  your surveys.
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