
iOS – Developing Applications
Divesh Goyal
Mark Dostal

Esri International User Conference | San Diego, CA
Technical Workshops |

iOS – Developing Applications
Divesh Goyal
Mark Dostal

Wed, Jul 13, 2011

Agenda

• Getting Started
• Objective-C basics
• Common design patterns
• API Key Concepts

- Viewing maps
- Performing Analysis
- Collecting Data

• Q&A

ArcGIS - A Complete Geographic Information System

Author

Serve

Use

ArcGIS
Server

ArcGIS
Desktop

. . . For Authoring, Serving & Using Geographic Knowledge

ArcGIS Web & Mobile APIs

ArcGIS Server

REST

Flex

JavaScript

Silverlight

Web APIs

Mobile APIs

ArcGIS API for iOS

• Build native applications using Objective-C
- iPhone 3GS, iPhone 4, iPod Touch, iPad
- iOS 3.1.2 and up

Web or Native applications?

• ESRI supports both

• Advantages of native applications
- Tighter integration with other native apps
- Access to resources

- Contacts, calendar events, photos
- Marketing/Hosting/Reporting via AppStore

• Disadvantages
- Dedicated effort to write and maintain

DEMO

Before you begin..

• You need an Intel-based Mac
running OSX 10.6
(Snow Leopard)

• Join Apple’s iOS Developer Program
- Standard : AppStore distribution
- Enterprise : In-House distribution

• Download Apple’s iOS SDK (4.2.x)
& Xcode IDE (4.0.x)

• ArcGIS API for iOS v2.0

Agenda

• Getting Started
• Objective-C basics
• Common design patterns
• API Key Concepts

- Viewing maps
- Performing Analysis
- Collecting Data

• Q&A

Objective-C

• Its C
- Semicolons and curly braces
- Pointers (uh-oh)

• But not your average C
- colons and square brackets too
- A different syntax

• Thankfully, Cocoa Touch frameworks provide elegant
APIs

Objective-C basics

• Class = Interface + Implementation

- MyController.h

- MyController.m

@interface MyController: UIViewController {
// private variables here

}
// method declarations here

@end

@implementation MyController
// method implementations here
@end

Objective-C basics
Contd.

• Protocol
- Declaring a Protocol

- Adopting a protocol

@protocol UIApplicationDelegate
@required
// method definitions here

@optional
// method definitions here

@end

@interface MyDelegate: NSObject <UIApplicationDelegate> {
}
@end

Objective-C basics
Contd.

• Invoking methods = passing messages to objects

[foo alloc];foo.alloc();

foo.alloc().init(); [[foo alloc] init];

[point setCenter:c];point.setCenter(c);

point.set(x,y); [point setX:x andY:y];

[][object][object message]

C# / Java Objective-C

object.alloc(); [object alloc];

object.alloc().init(); [[object alloc] init];

object.setExtent(initExtent); [object setExtent: initExtent];

object.addLayer(layer, name); [object addLayer: layer withName: name];

Objective-C Basics
Contd.

• Messages are read like English
- presentViewController:

- writeToFile:
- layerFailedToLoad:

• Can get verbose
gestureRecognizer:shouldRecognizeSimultaneouslyWith
GestureRecognizer:

Objective-C basics
Contd.

• Garbage collection is for kids,
real developers manage their own memory

• You own an object if you
- alloc
- retain
- Or, copy

• If you own an object, you’re
responsible for releasing it

MyObject* foo = [MyObject alloc];

[foo release];

[foo copy];

[foo retain];

Objective-C basics
Contd.

• Properties make memory management easy’ier
• Syntactic sugar – dot notation

@interface MyController: UIViewController {
MyObject* _foo;

}
@property (nonatomic, retain) MyObject* foo

@end

@implementation MyController

@synthesize foo= _foo;

@end

myController.foo = bar; //bar automatically retained
myController.foo = nil; //bar automatically released

Monitor memory footprint with Instruments

Agenda

• Getting Started
• Objective-C basics
• Common design patterns
• API Key Concepts

- Viewing maps
- Performing Analysis
- Collecting Data

• Q&A

Common design patterns

• Model – View – Controller

Model
View

Controller

Common Design Patterns
Contd.

• Delegation

WindowDelegate

windowShouldClose?

YES

Agenda

• Getting Started
• Objective-C basics
• Common design patterns
• API Key Concepts

- Viewing maps
- Performing Analysis
- Collecting Data

• Q&A

What you can do with the API

• Display maps

• Perform analysis

• Visualize results

• Collect data

Displaying a Map

• UI Component : AGSMapView

- Responds to gestures
- Pinch to zoom
- Drag to pan
- Tap & Hold to magnify

- Displays GPS location
- Auto pan

Adding data to your map

• Mashup layers
- ArcGIS Server Tiled map
- ArcGIS Server Dynamic map
- ArcGIS Server Image
- Bing,

- Open Street Map

- Graphics
- Sketch

• Open web maps
- ArcGIS.com

- ArcGIS Portal

Display a map

DEMO

Respond to Map events through Delegates
Map Delegates

• Layer Delegate
- Map/Layer loaded, failed to load
- <AGSMapViewLayerDelegate>

• Touch Delegate
- Tap, Double Tap, Tap and Hold
- <AGSMapViewTouchDelegate>

• Callout Delegate
- Did Show Callout, Did Click Accessory Button
- <AGSMapViewCalloutDelegate>

Responding to Map Touch events
1. Adopt the Delegate protocol

@interface MyController: UIViewController <AGSMapViewTouchDelegate> {
}

2. Implement the protocol methods

@implementation MyController

- (void) mapView:(AGSMapView*) mapView
didClickAtPoint:(CGPoint) screen

mapPoint:(AGSPoint*) mappoint
graphics:(NSDictionary*) graphics {

//handle touch event
}

3. Set Delegate

self.mapView.touchDelegate = self;

Displaying GPS location

DEMO

Performing Analysis
Using Tasks

• Query, Find, Identify Task
- Search for features In the map

• Geoprocessing Task
- Spatial analysis using GP tools and models

• Locator
- Geocode and reverse geocode addresses

Performing Analysis
Contd.

• Geometry Engine
- native, high performance engine for performing

geometric operations on the device

• Routing Task
- Point-to-point and multipoint driving directions
- Barriers, Time Windows, Best Sequence

• Closest Facility Task
- Find nearest facility

• Service Area Task
- Compute drive times and service areas

Common Pattern for using Tasks
1. Adopt the Task Delegate protocol

- (void)locator:(AGSLocator*)locator
operation:(NSOperation*)op

didFindLocationsForAddress:(NSArray*)candidates {
//todo

}

- (void)locator:(AGSLocator*)locator
operation:(NSOperation*)op

didFailLocationsForAddress:(NSError*)error {
//todo

}

@interface MyController: UIViewController <AGSLocatorDelegate> {
}

2. Implement the protocol methods

Common Pattern for using Tasks
3. Instantiate the task

self.locator =
[AGSLocator locatorWithURL:[NSURL URLWithString:kGeoLocatorURL]];

4. Set Delegate

self.locator.delegate = self;

5. Perform operation

NSOperation* op =
[self.locator locationsForAddress:addresses returnFields:outFields];

Visualizing Results

• Graphics
- Geometry
- Attribute
- Symbol

• Symbols
- Picture, Marker, Line, Fill
- Composite
- Text

Visualizing Results
Contd.

• Renderers
- Simple
- Unique Value
- Class Breaks
- Temporal

Visualizing Results
Contd.

• Callout
- Displayed automatically

when user taps on a
graphic

• Content
- Title & Detail
- Image
- Accessory button
- Custom UI View

Specifying Content for the Callout
1. Adopt the Delegate Protocol

@interface MyController: UIViewController <AGSInfoTemplateDelegate> {
}

2. Implement the protocol methods

@implementation MyController

- (NSString *) titleForGraphic:(AGSGraphic*)graphic
screenPoint:(CGPoint)screen

mapPoint:(AGSPoint*)map {
//todo

}
- (NSString *) detailForGraphic:(AGSGraphic*)graphic

screenPoint:(CGPoint)screen
mapPoint:(AGSPoint*)map {

//todo
}

3. Set the delegate on the graphic

AGSGraphic *graphic = ...
graphic.infoTemplateDelegate = self;

Using Tasks and Visualizing Results

DEMO

Collecting Data
Using Feature layers & Popups

• Feature Layers edit data through
Feature Services

• Popups provide UI to
- Display and edit attributes
- Manage attachments
- View charts, media

• Popups configured through web maps
- Attributes to display & edit
- User friendly aliases and hints
- Formatting for numbers, dates

Collecting Data

• Edit feature
- Attributes
- Geometry
- Attachments

Using Popups

Editing Attributes

• Input based on field
data type

• Support for

- Subtypes

- Domains

• Validation

- Length

- Numeric range

Using Popups

Managing Attachments
Using Popups

• View & Download

• Add

• Delete

Editing Geometry

• Use GPS location

• Use Sketch Layer
- Interactively create & reshape geometries
- Point, line, polygon
- Undo, redo changes

Editing with Popups

Demo

Application Based on Device Type

• iPhone / iPod Touch

• iPad

• Universal app

Summary

• Getting Started
• Objective-C basics
• Common design patterns
• API Key Concepts

- Viewing maps
- Performing Analysis
- Collecting Data

• Q&A

More Resources

• iOS Resource Center
- Conceptual help, API Reference
- Blog, Forums
- Download API v2.0

• Samples on ArcGIS.com
- ArcGIS for iOS Developer Samples group

• Web Course : Getting Started with the ArcGIS API for iOS
- training.esri.com

Related Sessions

• Wednesday, July 13th

- 3:15pm – 4:30pm – ArcGIS for iOS (31b)

• Thursday, July 14th

- 10:40am – 11:00am – Road Ahead – ArcGIS for iOS (6b)
- 1:30pm – 2:45pm - Esri Mobile Solutions Overview (15a)
- 10:40am – 11:00am – Road Ahead – ArcGIS for iOS (6b)

• Friday, July 15th

- 9:00am – 10:15am – ArcGIS for iOS (10)
- 9:00am – 10:15am – Esri Mobile Solutions Overview (4)

Thank You

Help make this session better…

… Turn in your surveys.

	iOS – Developing Applications
	iOS – Developing Applications
	Agenda
	ArcGIS - A Complete Geographic Information System
	ArcGIS Web & Mobile APIs
	ArcGIS API for iOS
	Web or Native applications?
	DEMO
	Before you begin..
	Agenda
	Objective-C
	Objective-C basics
	Objective-C basics
	Objective-C basics	
	Objective-C Basics	
	Objective-C basics	
	Objective-C basics
	Agenda
	Common design patterns
	Common Design Patterns	
	Agenda
	What you can do with the API
	Displaying a Map
	Adding data to your map
	DEMO
	Respond to Map events through Delegates
	Responding to Map Touch events
	DEMO
	Performing Analysis	
	Performing Analysis
	Common Pattern for using Tasks
	Common Pattern for using Tasks
	Visualizing Results
	Visualizing Results
	Visualizing Results
	Specifying Content for the Callout
	DEMO
	Collecting Data	
	Collecting Data
	Editing Attributes
	Managing Attachments
	Editing Geometry
	Demo
	Application Based on Device Type
	Summary
	More Resources
	Related Sessions
	Thank You
	Slide Number 55

