

Esri International User Conference | San Diego, CA Technical Workshops | July 2011

Introduction to ArcGIS Spatial Analyst

Steve Kopp

Elizabeth Graham

ArcGIS Spatial Analyst

- Integrated raster and vector spatial analysis tools
- Extension product that adds functionality to ArcGIS Desktop, Engine, and Server

Key Features of Spatial Analyst

- Over 170 geoprocessing tools
- Analysis on all raster formats
- Analysis on all vector formats
- Calculator with Map Algebra syntax
- Great developer experience

Spatial Analyst Overview

Spatial Analyst toolbar

 Dropdown list of functions is gone, use standard Windows Customize to add your favorite tools and custom models

- Use Search to find tools
 - All previous tool and function names are part of the search index

Geoprocessing Environment

- Cellsize
- Extent
 - Snap Raster
- Mask
- Map Projection

Data Exploration and Selection

- Cell-based identify
- Attribute-based selection
 - honored during analysis
- Histogram selected cells in a raster
 - selected by attribute, features in a Feature Theme, or a selected graphic
- Zonal Histogram

Analysis Tools

- Mathematical Operators and Functions
- Distance and Proximity Analysis
- Density Mapping
- Neighborhood and Block Statistics
- Zonal Overlay
- Interpolation and Contouring
- Surface Analysis
- Hydrologic and Groundwater Analysis
- Reclassification
- Geometric Transformation
- Morphological Analysis
- Multivariate Statistical Analysis

Mathematical Operators

- Arithmetic (+, -, *, /)
- Boolean (AND, OR, XOR, NOT)
- Logical (<, >, =, <>, etc.)
- Bitwise (shift, compliment)

Map Query

- Boolean (AND, OR, XOR, NOT)
- Logical (>, >=, =, <>, <, <=)

Mathematical Functions

- Arithmetic—Abs, Int, Float, etc.
- Trigonometric—Sin, Cos, Tan, etc.
- Exponential—Exp, Exp2, Exp10
- Logarithmic—Log, Log2, Log10
- Powers—Sqr, Sqrt

The Int function

= NoData

Map Algebra and the new Raster Calculator tool

- An analysis language for raster data
 - Uses math-like expressions with operators and functions
 - Tight integration between Map Algebra and Python
 - All Geoprocessing tools
 - Import and use functions from other Python libraries
 - Process chain optimization to improve performance

SmoothHill = Hillshade(FocalStatistics(Elevation * 0.3048))

New Raster Calculator Geoprocessing tool provides easy

access to Map Algebra

Distance and Proximity Analysis

- Straight line distance and allocation
 - Create distance buffers from features.
 - Allocate resources to distribution centers.
- Cost weighted distance and allocation
 - Include a weight or impedance surface to constrain movement.
- Shortest path
 - Find least cost path between two points.
 - Identify corridors of predicted travel.

Distance and Proximity Analysis cont.

Corridor Analysis

Density Mapping

- Simple Density and Kernel Density
- Count occurrences of a phenomena within an area and distribute it through the area.

"Magnitude per unit area"

- Use points or lines as input.
 - Population per Km2
 - Road density per Mi2

Neighborhood and Block Statistics

- Calculates a statistic for a neighborhood
 - Majority, Maximum, Mean, Median, Minimum, Minority, Range, Sum, Standard Deviation, Variety
- Used for filtering, data smoothing, and data aggregation

Neighborhood Statistics

Mean of 3x3 neighborhood

Block Statistics

Mean of 3x3 neighborhood

Zonal Overlay

- A zone is all the areas/cells with the same value
- Calculate a statistic within the zones for each cell in a raster
- Input zones can be feature or raster
- Output as a raster, summary table, or graph
 - Max flow length in each watershed
 - Median income in each ZIP CODE
 - Mean elevation per vegetation zone

Zonal Overlay (cont.)

Slope

Watersheds

Mean Slope per Watershed

Zonal Histogram

- Create histograms of cell counts within Zones
 - Same zone definitions as Zonal Statistics
 - Zones can also be classes defined in the renderer
- Investigate frequency/distribution of one dataset within classes of another dataset
 - Slope distribution within Landuse classes
 - Rainfall distribution within Elevation classes
 - Crime distribution by beat

Interpolation and Contouring

- Generate surfaces from point measurements
 - Natural Neighbors
 - Minimum Curvature Spline
 - Spline with Barriers
 - TopoToRaster
 - Kriging
 - Polynomial Trend Surface
 - Inverse Distance Weighted
- Create contours from surfaces
 - Batch GP tools
 - Interactive contour button

Choosing an interpolation method

- You know nothing about your data...
 - Use Natural Neighbors. Its is the most conservative. Assumes all highs and lows are sampled, will not create artifacts.
- Your input data is contours...
 - Use TopoToRaster. It is optimized for contour input. If not creating a DEM, turn off the drainage enforcement option.
- You know the highs and lows are not sampled...
 - Use Spline. Be careful of points that are near in space but very different in value creating unnatural artifacts.
- Your surface is not continuous...
 - Use Spline with Barriers if you know there are faults or other discontinuities in the surface.

Interpolation and Contouring with Barriers

- Spline with Barriers tool a Minimum Curvature Spline that honors barriers, faults, and void areas.
- Contour with Barriers

Surface Analysis

- Hillshade
- Slope
- Aspect
- Viewshed
- Cut/Fill
- Curvature

Solar Radiation Tools

 Calculate amount of direct and indirect solar radiation on the earth's surface.

- Two methods
 - Area
 - Locations
- 3 geoprocessing tools
 - Area Solar Radiation
 - Point Solar Radiation
 - Solar Radiation Graphics
 - Diagnostic raster "maps" of sky, viewshed, and sun tracks used in the analysis.
- Applications in biology, agriculture, hydrology, snow science, fire modeling, energy, etc

Example Solar Radiation Analysis

Mean direct solar radiation (Wh/m2) on building rooftops for solar energy assessment.

http://gis.cityofboston.gov/solarboston/ http://www.slcgovsolar.com/

Reclassification

- Reclassify individual values or ranges of values.
- Load and save reclass tables.

The Weighted Overlay tool

Assign weights and combine multiple inputs

Rester	% influence	Field	Scale Value	+ +
S street	70	Value		
			1	×
		- 2	3	1000
		4	3	+
	_	5	5	1
		6	1 6	1
		7	7	1000
		8	8	
		9	9	
7.000		NODATA	NODATA	
A tpower	10	Value		(800)
		7	1 2	G-
	_	2	1 2	
				-1 -
n of influence	100	Sett	gual Influence	
aluation scale		From 1	o ty	
to 9 by 1	*		- [-
			-	
put raster				1
	Exercise10%SkiModelfus		6	

Weighted Overlay

- Perform Weighted Overlay analysis for suitability modeling "where is the best place"
 - Weight layers
 - Weight classes
 - Supports NoData and restricted values
 - Easier to use, explain, and modify than using reclass and map algebra

Building the Suitability Model

Reclassify Weighted Overlay

Fuzzy Overlay

- 2 Geoprocessing tools Fuzzy Reclassify, Fuzzy Overlay
- Useful in site selection and suitability modeling
- Similar to existing Weighted Overlay, but adds...
 - Fuzzy AND, OR, Gamma combinations (not just Plus)

Great Basin Geothermal Potential

New Zealand Wind Energy Siting

Hydrologic Analysis

- Create watersheds and stream networks from DEMs
 - Flow Direction
 - Flow Accumulation
 - Watershed Delineation
 - Flow Length
 - Sink Filling
 - Stream Ordering

Hydrologic Analysis (cont.)

Flow Direction

Watershed

Flow Accumulation

Downstream flow length

Stream Ordering

More on these tools, Tuesday 10:40 in Rm 6A

Groundwater Modeling

- Creates groundwater flow fields
- Two-dimensional advection and dispersion modeling
- Functions
 - DarcyFlow
 - ParticleTrack
 - PorousPuff
 - Sample script to create well capture zones

Tracking particles from a contaminant spill to a pumping well using the Particle Track tool. From this analysis it can be determined if the contaminant is getting into the drinking water for a nearby town.

Multivariate Statistics

- Class Signatures, Edit Signatures, Dendrogram
- Principal Component, Iso Cluster, MLClassify
- Class Probability, Band Collection Statistics

Image Classification

- Exposes image classification capabilities in a new toolbar
- Includes new capabilities for easy collecting and evaluating training samples

Generalization and Data Cleanup

- Smooth boundaries between zones
- Value replacement, nibbling
- Majority filtering
- Expand, shrink
- Group regions
- Raster thinning

Questions & Answers

Please fill out the session evaluation forms

Thank you

ArcGIS Spatial Analyst Technical Sessions

- An Introduction Rm 1 A/B
 Tuesday, July 12, 8:30AM 9:45AM
 Thursday, July 14, 10:15AM 11:30AM
- Suitability Modeling Rm 1 A/B
 Tuesday, July 12, 1:30PM 2:45PM
 Thursday, July 14, 8:30AM 9:45AM
- Dynamic Simulation Modeling Rm 5 A/B
 Wednesday, July 13, 8:30AM 9:45AM
- Raster Analysis with Python Rm 6C
 Tuesday, July 12, 3:15PM 4:30PM
 Wednesday, July 13, 3:15PM 4:30PM
- Creating Surfaces Rm 1 A/B
 Wednesday, July 13, 1:30PM 2:45PM

ArcGIS Spatial Analyst Short Technical Sessions

- Creating Watersheds and Stream Networks Rm 6A
 Tuesday, July 12, 10:40AM 11:00AM
- Performing Image Classification Rm 6B
 Tuesday, July 12, 8:30AM 8:50AM
- Performing Regression Analysis Using Raster Data 6B
 Tuesday, July 12, 8:55AM 9:15AM

Demo Theater Presentations – Exhibit Hall C

- Modeling Rooftop Solar Energy Potential Tuesday, July 12, 3:30PM – 4:00PM
- Surface Interpolation in ArcGIS
 Wednesday, July 13, 9:00AM 10:00AM
- Getting Started with Map Algebra
 Wednesday, July 13, 10:00AM 11:00AM
- Agent Based Modeling
 Wednesday, July 13, 5:30PM 6:00PM