Introduction to ArcGIS Spatial Analyst

Steve Kopp
Elizabeth Graham
ArcGIS Spatial Analyst

- Integrated raster and vector spatial analysis tools
- Extension product that adds functionality to ArcGIS Desktop, Engine, and Server
Key Features of Spatial Analyst

• Over 170 geoprocessing tools
• Analysis on all raster formats
• Analysis on all vector formats
• Calculator with Map Algebra syntax
• Great developer experience
Spatial Analyst Overview
Spatial Analyst toolbar

- Dropdown list of functions is gone, use standard Windows Customize to add your favorite tools and custom models

- Use Search to find tools
 - All previous tool and function names are part of the search index
Geoprocessing Environment

- Cellsize
- Extent
 - Snap Raster
- Mask
- Map Projection
Data Exploration and Selection

- Cell-based identify
- Attribute-based selection
 - honored during analysis
- Histogram selected cells in a raster
 - selected by attribute, features in a Feature Theme, or a selected graphic
- Zonal Histogram
Getting Started with Spatial Analyst
Analysis Tools

- Mathematical Operators and Functions
- Distance and Proximity Analysis
- Density Mapping
- Neighborhood and Block Statistics
- Zonal Overlay
- Interpolation and Contouring
- Surface Analysis
- Hydrologic and Groundwater Analysis
- Reclassification
- Geometric Transformation
- Morphological Analysis
- Multivariate Statistical Analysis
Mathematical Operators

- **Arithmetic** (+, -, *, /)
- **Boolean** (AND, OR, XOR, NOT)
- **Logical** (<, >, =, <>), etc.
- **Bitwise** (shift, compliment)
Map Query

- Boolean (AND, OR, XOR, NOT)
- Logical (> , >=, =, <> , <, <=)
Mathematical Functions

- Arithmetic—Abs, Int, Float, etc.
- Trigonometric—Sin, Cos, Tan, etc.
- Exponential—Exp, Exp2, Exp10
- Logarithmic—Log, Log2, Log10
- Powers—Sqr, Sqrt

The Int function

![Input raster](image1) = ![Output raster](image2) = NoData
Map Algebra and the new Raster Calculator tool

- An analysis language for raster data
 - Uses math-like expressions with operators and functions
 - Tight integration between Map Algebra and Python
 - All Geoprocessing tools
 - Import and use functions from other Python libraries
 - Process chain optimization to improve performance

SmoothHill = Hillshade(FocalStatistics(Elevation * 0.3048))

- New Raster Calculator Geoprocessing tool provides easy access to Map Algebra
Distance and Proximity Analysis

• **Straight line distance and allocation**
 - Create distance buffers from features.
 - Allocate resources to distribution centers.

• **Cost weighted distance and allocation**
 - Include a weight or impedance surface to constrain movement.

• **Shortest path**
 - Find least cost path between two points.
 - Identify corridors of predicted travel.
Corridor Analysis

From:
Cost Distance A
Cost Distance B

Corridor

Corridor(s)

Adds two accumulative travel cost layers together

Cost A

Cost B

Corridor of low cost

Alternate route?
Density Mapping

- Simple Density and Kernel Density

- Count occurrences of a phenomena within an area and distribute it through the area.

 "Magnitude per unit area"

- Use points or lines as input.
 - Population per Km2
 - Road density per Mi2
Neighborhood and Block Statistics

• Calculates a statistic for a neighborhood
 - Majority, Maximum, Mean, Median, Minimum, Minority, Range, Sum, Standard Deviation, Variety

• Used for filtering, data smoothing, and data aggregation
Neighborhood Statistics

Mean of 3x3 neighborhood

5 6 2 1 9
5 3 7 4 5
7 2 1 4 9
2 5 1 6 7
2 6 3 4 6

3.22
Block Statistics

Mean of 3x3 neighborhood

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.22</td>
<td>3.22</td>
<td>3.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.22</td>
<td>3.22</td>
<td>3.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.22</td>
<td>3.22</td>
<td>3.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zonal Overlay

- A **zone** is all the areas/cells with the same value
- Calculate a statistic within the zones for each cell in a raster
- Input zones can be feature or raster
- Output as a raster, summary table, or graph
 - Max flow length in each watershed
 - Median income in each ZIP CODE
 - Mean elevation per vegetation zone
Zonal Overlay (cont.)

Mean Slope per Watershed

Slope

Watersheds
Zonal Histogram

- Create histograms of cell counts within Zones
 - Same zone definitions as Zonal Statistics
 - Zones can also be classes defined in the renderer

- Investigate frequency/distribution of one dataset within classes of another dataset
 - Slope distribution within Landuse classes
 - Rainfall distribution within Elevation classes
 - Crime distribution by beat
Interpolation and Contouring

• Generate surfaces from point measurements
 - Natural Neighbors
 - Minimum Curvature Spline
 - Spline with Barriers
 - TopoToRaster
 - Kriging
 - Polynomial Trend Surface
 - Inverse Distance Weighted

• Create contours from surfaces
 - Batch GP tools
 - Interactive contour button
Choosing an interpolation method

• You know nothing about your data…
 - Use Natural Neighbors. It’s is the most conservative. Assumes all highs and lows are sampled, will not create artifacts.

• Your input data is contours…
 - Use TopoToRaster. It is optimized for contour input. If not creating a DEM, turn off the drainage enforcement option.

• You know the highs and lows are not sampled…
 - Use Spline. Be careful of points that are near in space but very different in value creating unnatural artifacts.

• Your surface is not continuous…
 - Use Spline with Barriers if you know there are faults or other discontinuities in the surface.
Interpolation and Contouring with Barriers

- Spline with Barriers tool – a Minimum Curvature Spline that honors barriers, faults, and void areas.
- Contour with Barriers
Surface Analysis

- Hillshade
- Slope
- Aspect
- Viewshed
- Cut/Fill
- Curvature
Solar Radiation Tools

- Calculate amount of direct and indirect solar radiation on the earth’s surface.
 - Two methods
 - Area
 - Locations
- 3 geoprocessing tools
 - Area Solar Radiation
 - Point Solar Radiation
 - Solar Radiation Graphics
 - Diagnostic raster “maps” of sky, viewshed, and sun tracks used in the analysis.
- Applications in biology, agriculture, hydrology, snow science, fire modeling, energy, etc
Example Solar Radiation Analysis

Mean direct solar radiation (Wh/m²) on building rooftops for solar energy assessment.

http://gis.cityofboston.gov/solarboston/
http://www.slcgovsolar.com/
Building Blocks of Ski Suitability

- Euclidian Distance
- Natural Neighbors
- Slope
Reclassification

- Reclassify individual values or ranges of values.
- Load and save reclass tables.
The Weighted Overlay tool

- Assign weights and combine multiple inputs
Weighted Overlay

- Perform Weighted Overlay analysis for suitability modeling \textit{“where is the best place”}
 - Weight layers
 - Weight classes
 - Supports NoData and restricted values
 - \textit{Easier to use, explain, and modify than using reclass and map algebra}
Building the Suitability Model

Reclassify
Weighted Overlay
Fuzzy Overlay

- 2 Geoprocessing tools - Fuzzy Reclassify, Fuzzy Overlay
- Useful in site selection and suitability modeling
- Similar to existing Weighted Overlay, but adds…
 - Fuzzy AND, OR, Gamma combinations (not just Plus)

Great Basin Geothermal Potential

New Zealand Wind Energy Siting
Hydrologic Analysis

- Create watersheds and stream networks from DEMs
 - Flow Direction
 - Flow Accumulation
 - Watershed Delineation
 - Flow Length
 - Sink Filling
 - Stream Ordering
Hydrologic Analysis (cont.)

Flow Direction

Flow Accumulation

Downstream flow length

Pour Point

Watershed

Sink

Filled sink

Stream Ordering

More on these tools, Tuesday 10:40 in Rm 6A
Groundwater Modeling

- Creates groundwater flow fields
- Two-dimensional advection and dispersion modeling
- Functions
 - DarcyFlow
 - ParticleTrack
 - PorousPuff
 - Sample script to create well capture zones

Tracking particles from a contaminant spill to a pumping well using the Particle Track tool. From this analysis it can be determined if the contaminant is getting into the drinking water for a nearby town.
Multivariate Statistics

- Class Signatures, Edit Signatures, Dendrogram
- Principal Component, Iso Cluster, MLClassify
- Class Probability, Band Collection Statistics
Image Classification

- Exposes image classification capabilities in a new toolbar
- Includes new capabilities for easy collecting and evaluating training samples
Generalization and Data Cleanup

- Smooth boundaries between zones
- Value replacement, nibbling
- Majority filtering
- Expand, shrink
- Group regions
- Raster thinning
Image Classification Toolbar

Supervised Classification
Questions & Answers

Please fill out the session evaluation forms

Thank you
ArcGIS Spatial Analyst Technical Sessions

- **An Introduction - Rm 1 A/B**
 Tuesday, July 12, 8:30AM – 9:45AM
 Thursday, July 14, 10:15AM – 11:30AM

- **Suitability Modeling - Rm 1 A/B**
 Tuesday, July 12, 1:30PM – 2:45PM
 Thursday, July 14, 8:30AM – 9:45AM

- **Dynamic Simulation Modeling – Rm 5 A/B**
 Wednesday, July 13, 8:30AM – 9:45AM

- **Raster Analysis with Python – Rm 6C**
 Tuesday, July 12, 3:15PM – 4:30PM
 Wednesday, July 13, 3:15PM – 4:30PM

- **Creating Surfaces – Rm 1 A/B**
 Wednesday, July 13, 1:30PM – 2:45PM
ArcGIS Spatial Analyst Short Technical Sessions

• Creating Watersheds and Stream Networks – Rm 6A
 Tuesday, July 12, 10:40AM – 11:00AM

• Performing Image Classification – Rm 6B
 Tuesday, July 12, 8:30AM – 8:50AM

• Performing Regression Analysis Using Raster Data – 6B
 Tuesday, July 12, 8:55AM – 9:15AM
Demo Theater Presentations – Exhibit Hall C

- **Modeling Rooftop Solar Energy Potential**
 Tuesday, July 12, 3:30PM – 4:00PM

- **Surface Interpolation in ArcGIS**
 Wednesday, July 13, 9:00AM – 10:00AM

- **Getting Started with Map Algebra**
 Wednesday, July 13, 10:00AM – 11:00AM

- **Agent Based Modeling**
 Wednesday, July 13, 5:30PM – 6:00PM