Local Elevation Surface Modeling using GPS-Derived “Point Clouds”
Study Area Overview

Topographic Background

NAIP with Roads and Streams

© John G. Whitman, Jr.
Public DEM Models of Study Area

National Elevation Dataset

DEM24

© John G. Whitman, Jr.
NED Hill Topography Detail

© John G. Whitman, Jr.
DEM24 Hill Topography Detail

© John G. Whitman, Jr.
Surprising DEM Metadata

National Elevation Dataset

• RMS: 2.44 meters (8.0 feet)
• NMAS: 3.99 m (13.09 feet)
 @ 90% confidence
• NSSDA: 4.75 m (15.58 feet)
 @ 95% confidence

(Absolute vertical accuracy measured against 13,000 National Geodetic Survey benchmarks across US and given by confidence level)

VCGI DEM24 Metadata

• Desired RMS: 7 meters (23 feet)
• Allowable RMS: 15 meters (49 feet)

(These figures are believed to be conservatively based on the production goals for USGS 7.5 minute DEMs)
Equipment and Software Employed

Trimble GPS Resources

• *GeoExplorer XT Handheld* Field Computer (2008 Series)
• *Hurricane* External Antenna
• *Terrasync* Field Software
• *Pathfinder Office* Desktop Software

ESRI GIS Software

• *ArcGIS Desktop (ArcEditor Level)*
• *Spatial Analyst* Extension
• *3D Analyst* Extension

© John G. Whitman, Jr.
Overview of Methodology

GPS Data Collection/Export
- Walk the area of interest, randomly or systematically, collecting “Not in Feature” GPS positions at 1-second intervals
- Correct positions by post-processing and export as a point shapefile
- Repeat as needed to achieve full area coverage

GIS Processing/Presentation
- Select a suitable data structure and parameters for surface representation (TIN, raster, terrain)
- Merge data from multiple days of collection and convert to chosen format
- Display, analyze and evaluate the resulting elevation surface

© John G. Whitman, Jr.
Necessary Conditions for Success

“Good” Horizontal Positions

• NED’s 10-meter post spacing represents the horizontal spatial resolution we seek to improve upon

• We should check how well the nominally “sub-meter” GPS hardware/software system performs under the field conditions actually experienced

“Not Too Bad” Elevations

• NED elevation absolute accuracy is 8 feet RMS, 16 feet with 95% confidence

• DEM-based elevation contours are generally drawn at 20-foot intervals

• Averaging of individual GPS elevation values will be needed to improve upon a NED elevation surface

© John G. Whitman, Jr.
Data Collection Focus Areas

Copyright John G. Whitman, Jr
1st GPS Data Capture Illustration

North Pasture Data Capture

Position Detail with Elevations

© John G. Whitman, Jr.
2nd GPS Data Capture Illustration

Spruce Grove Data Capture

Position Detail with Elevations

© John G. Whitman, Jr.
Spruce Grove Route Detail
Further Look at Spruce Grove Data

Spruce Grove GPS Positions

Track with Precision Circles

© John G. Whitman, Jr.
Horizontal Positional Uncertainty

“Best Day” Estimate

<table>
<thead>
<tr>
<th>Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15cm</td>
<td>27.5%</td>
</tr>
<tr>
<td>15-30cm</td>
<td>40.9%</td>
</tr>
<tr>
<td>30-50cm</td>
<td>18.0%</td>
</tr>
<tr>
<td>0.5-1m</td>
<td>10.5%</td>
</tr>
<tr>
<td>1-2m</td>
<td>2.7%</td>
</tr>
<tr>
<td>2-5m</td>
<td>0.5%</td>
</tr>
<tr>
<td>>5m</td>
<td>-</td>
</tr>
</tbody>
</table>

“Best Day” Detail

© John G. Whitman, Jr.
Horizontal Positional Uncertainty

Accuracy Estimate Statistics

Estimated accuracies for 367,989 corrected positions

<table>
<thead>
<tr>
<th>Range</th>
<th>%</th>
<th>Cum %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15cm</td>
<td>2.54</td>
<td>2.54</td>
</tr>
<tr>
<td>15-30cm</td>
<td>2.43</td>
<td>4.96</td>
</tr>
<tr>
<td>30-50cm</td>
<td>44.66</td>
<td>49.63</td>
</tr>
<tr>
<td>0.5-1m</td>
<td>37.00</td>
<td>86.62</td>
</tr>
<tr>
<td>1-2m</td>
<td>11.32</td>
<td>97.95</td>
</tr>
<tr>
<td>2-5m</td>
<td>1.60</td>
<td>99.54</td>
</tr>
<tr>
<td>>5m</td>
<td>0.11</td>
<td>99.65</td>
</tr>
</tbody>
</table>

Cumulative Data Collection

© John G. Whitman, Jr.
Elevation Data Range Comparison
Elevation Data SD Comparison
West Slopes Elevation SDs

© John G. Whitman, Jr.
Example Red Cell Elevation Stats
Averaging Noisy Values in Raster Cells

Law of Large Numbers

- Sample means become more concentrated about the universe (true) mean as the sample size grows.

Central Limit Theorem

- The expected value of a sample mean is the true mean.
- The standard deviation of sample means decreases with the square root of sample size.

Tchebycheff’s Inequality

- The probability that a randomly sampled value differs from the true mean by more than K standard deviations will not exceed $1/K^2$ (regardless of the shape of the distribution).
Cell Size vs. Point Count Sufficiency

10m Cells

7m Cells

5m Cells

3m Cells

© John G. Whitman, Jr.
Unavoidable GPS Data Gaps
Low-Pass Spatial Filtering
(is not equivalent to resampling)

Original Image Low Pass Filter 3X Larger Cells

© John G. Whitman, Jr.
Single-Cell Spatial Filtering

Unfiltered First Pass Second Pass Third Pass

© John G. Whitman, Jr.
Low-Pass Spatial Filtering

Noisy Image First Pass Second Pass Third Pass

© John G. Whitman, Jr.
Validating an Elevation Surface

North Pasture

South Flats

© John G. Whitman, Jr.
Hilltop Area Contours

© John G. Whitman, Jr.
Expanded Area Validation (Method 1)

- View encompasses all four focus areas (~40 acres)
- Colored 10-foot contours were developed using two fully independent data subsets
 - odd days – magenta
 - even days – orange
- Heavy black contours were developed using combined (odd + even) data

© John G. Whitman, Jr.
Expanded Area Validation (Method 2)

- Colored and black 10-foot contours as before
 - odd days – magenta
 - even days – orange
 - odd + even – black
- Background colors indicate magnitude of odd-even MSL differences
 - 0 - 2.5 feet – dark green
 - 2.5 – 5 feet – light green
 - 5 – 7.5 feet – yellow

© John G. Whitman, Jr.
GPS-NED Elevation Differences

- 40-acre extent as before
- GPS surface believed reliable to plus/minus 5 feet
- Colors indicate magnitude of GPS and NED MSL differences
 - 0 - 2.5 feet – dark green
 - 2.5 – 5 feet – light green
 - 5 – 7.5 feet – yellow
 - 7.5 – 10 feet – orange
 - 10 – 12.5 feet - red

© John G. Whitman, Jr.
GPS-NED Contour Comparison

GPS Surface NED Surface

© John G. Whitman, Jr.
Reflection and Conclusions

• Field methods
• GPS equipment/software performance
• GIS processing and tools
• Practicality
• General satisfaction
• What’s next?
Contact Information

GPS/GIS Mapping
Data Collection Services and
Custom Map Products for
Individuals and Organizations
John G. Whitman, Jr.
Green Forest Farm
P.O. Box 177
Readsboro, VT 05350
(802) 423-9917
WhitmanJ2@myfairpoint.net

Not all who wander are lost!