Hydrologic and Hydraulic Modeling with ArcGIS

Dean Djokic, Esri
Overview

- Core GIS tools for surface water analysis
- DEM data and processing
 - Demo
- Application tools for Hydrologic and Hydraulic Modeling
- Q&A
Water Resources Issues

• Not enough (droughts)

• Too much (floods)

• Of wrong kind (water quality)

• In a wrong place (spatial distribution)

• At the wrong time (temporal distribution)
Focus on Surface Water Quantity

• How much water is there?
 - *Hydrologic modeling* (precipitation-runoff modeling), determines for a given storm on a landscape, how much water will become runoff.

• Where will it go?
 - *Hydraulic modeling* takes the quantity of water and the shape of the landscape and stream channel and determines how deep and fast the water will be, and what area it will cover in the event of a flood.
Hydrologic Modeling

- **Goal:** Find stream discharge, Q, at a location for a given precipitation event.
- There are many ways to calculate Q.
 - Statistical methods
 - USGS regression equations (NFF, StreamStats)
 - “Physical” modeling (rainfall-runoff models)
 - HEC-HMS, SMS, etc.

- GIS is used to summarize terrain and hydrologic characteristics of the watershed for input to a model.
Hydrologic Modeling

• Map natural processes onto software tasks.
• Aggregate landscape characteristics and define the layout.
 - “Lumped parameter model”
Hydraulic Modeling

- **Goal:** Predict water surface elevations to create flood inundation maps.
 - Also predict velocity, sedimentation, quality
- **Input:** Channel and floodplain geometry with hydraulic characteristics, plus discharge ‘Q’ and initial water surface level.
- **Output:** Water surface elevation at each cross section and other characteristics.

GIS is used to summarize terrain and hydraulic characteristics of the channel for input to a model and post process hydraulic modeling results (surface determination).
GIS Data for Hydrologic and Hydraulic Modeling

• Digital Elevation Model and land cover
 - http://seamless.usgs.gov/
 - http://edna.usgs.gov/
 - http://www.horizon-systems.com/nhdplus/

• Watershed boundaries

• Hydrography
 - http://nhd.usgs.gov/

• Soils
GIS Data for Hydrologic and Hydraulic Modeling

- **Current and historic water records**
 - http://waterdata.usgs.gov/nwis
 - http://www.epa.gov/STORET/index.html
 - http://his.cuahsi.org/

- **Climate and precipitation**
 - http://www.weather.gov/gis/
 - http://www.ncdc.noaa.gov oa/ncdc.html

- **Channel geometry (cross sections)**
Drainage System

Watershed
(Basin, Catchment, Contributing area)

Watershed Boundaries
(Drainage Divides)

Pour Points
(Outlets)
GIS Tools for Describing Surface Water Movement

- Dendritic morphology – simple process

Flow Diagram

- **DEM**
 - **FLOW DIRECTION**
 - **SINK**
 - Are there any sinks?
 - Yes → **FILL** → **Depressionless DEM**
 - No → **FLOW ACCUMULATION**
 - Apply Threshold
 - **STREAM ORDER**
 - **STREAM LINE**
 - **STREAM LINK**
 - **FLOWLENGTH**
 - **SNAP POUR**
 - **WATERSHED**
Flow Direction

Elevation

<table>
<thead>
<tr>
<th>78</th>
<th>72</th>
<th>69</th>
<th>71</th>
<th>58</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>67</td>
<td>56</td>
<td>49</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>69</td>
<td>53</td>
<td>44</td>
<td>37</td>
<td>38</td>
<td>48</td>
</tr>
<tr>
<td>64</td>
<td>58</td>
<td>55</td>
<td>22</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>68</td>
<td>61</td>
<td>47</td>
<td>21</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>74</td>
<td>53</td>
<td>34</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Flow Direction

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>128</td>
<td>128</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

Direction Coding

- **32**
- **64**
- **128**
- **16**
- **4**
- **2**
Flow Accumulation

Direction Coding
Creating Vector Streams

Value = No Data

NET_GRID

StreamToFeature

RasterToFeature
Stream Link

- Assign a unique value to each stream segment.
 - Can be used as input to Watershed tool
Watershed, subwatershed, drainage area

- Delineate the contributing area to a cell or group of cells.
Using the Tools in Model Builder
Summarizing Watershed Characteristics

- Use the Zonal Statistics tool.
- A “zone” is all the areas/cells with the same value.
- Calculate a statistic within the zones for each cell in a raster.
- Input zones can be feature or raster.
- Output as a raster, summary table, or chart.
 - Max. flow length per watershed
 - Average slope per watershed
 - Average curve number per watershed
Summarizing Watershed Characteristics

- Using Zonal Statistics

Slope

Mean Slope per Watershed

Watersheds
Elevation Data

• Types
 - DEM: Digital Elevation Model (*bare Earth*)
 - DSM: Digital Surface Model (*with buildings and trees*)

• Data Structure
 - Raster
 - TIN
 - Terrain dataset
Where Do You Get DEM Data?

• **Sources**
 - Existing data: USGS DEM, NED, DTED, ETOPO30, SRTM
 - LiDAR, IfSAR
 - Generated photogrammetrically
 - Interpolated from points and lines

• **What cell size and accuracy?**
 - Horizontal and Vertical resolution must be appropriate for the landscape and scale being modeled.
DEM Construction Considerations

- Resolution and extent
- Projection (for hydrology – use equal area)
- Source elevation data
- Interpolation techniques
 - For hydrologic applications, use TopoToRaster.
 - Avoids problems with contour input
 - Creates hydrologically correct DEM
DEM Errors – Sinks and Spikes

• Sinks: when sinks are (or are not) sinks – lakes, depressions,…
 - Global fill
 - Dealing with internal basins
 - Selective fill
 - Depth
 - Area
 - Volume
 - “you just know it”
DEM Editing

- Streams: When streams are not where they “should” be
 - Flat areas – Difficulty in determining the flow pattern
 - Barriers (roads) diverting the flow paths
 - How to “model” bridges and culverts in DEM
 - How to model dams
 - Imposing the flow pattern - to burn or not to burn (beware of the scale issues and artifacts – Saunders, 2000.)
 - Simple burn
 - AGREE
 - OMNR
DEM Editing (cont.)

• Watersheds—When watershed boundaries are not where they “should” be
 - To fence or not to fence
 - Ineffective flow areas
What If You Do Not Have Dendritic Morphology?

- Arc Hydro tools for terrain preprocessing:
 - Modified dendritic process
 - Burning streams
 - Fencing boundaries
 - Bowling lakes
 - Flow splits
 - Deranged terrains
 - Selective filling of sinks
 - Streams draining into sinks
 - Combined dendritic/deranged
Workflows, Workflows, Workflows

• “Basic” dendritic preprocessing

- Burning streams
- Bowling lakes
- Fencing
Where is this functionality?

- **ArcGIS Spatial Analyst**
 - Tools in the Spatial Analyst Toolbox
 - Sample Toolbar on ArcObjects Online
 - HydrologyOp containing ArcObjects methods
 - *Example ModelBuilder model on the Geoprocessing Center Web site*

- **Arc Hydro**
 - Tools in the Arc Hydro Toolbox
 - Arc Hydro Toolbar
Arc Hydro

- Extension of geodatabase model for support of water resources applications (template data model)
- Collection of tools for support of Arc Hydro geodatabase design and basic water resources functions
- Starting point for water resources database and application development
Data Model Purpose

- Target audience: Water resources (surface) community interested in quick start in ArcGIS implementation
- Starting point for project model design
- Not a “do all” design
- Not implementation/application specific, but provides the key components to develop on top of

 The user needs to add additional data structures for their specific requirements – there’s still work to be done!
What makes Arc Hydro different?

ArcGIS: All features are labeled with a unique **ObjectID** within a feature layer.

Arc Hydro: All features are labeled with a unique **HydroID** across the geodatabase.

Arc Hydro is a unique “flavor” or style of doing GIS.

HydroID to ID relationships link neighboring features and help to trace water movement.
What makes Arc Hydro different?

Arc Hydro connects space and time: HydroFeatures are linked to time series.
Arc Hydro Data Model

ArcGIS Hydro Data Model
http://arconline.esri.com/arconline/datamodels/water.cfm
http://www.crwr.utexas.edu/giswr

GIS in Water Resources Consortium

Arc Hydro Data Model

Network

Channel

Hydrography

Drainage

Flow

Time Series
Arc Hydro Data Model Details

- Detailed representation at the end of corresponding chapters in the book (e.g., p. 51)

Hydro edges are the network of lines describing map hydrography. There are two types: flowlines, which trace water movement, and shorelines, which form the interface between land and water.

Unique feature identifier in the geodatabase
Permanent public identifier of the feature
An identifier for a river or stream segment
Geographic name
Length of the edge in kilometers
Length to nearest downstream sink (usually the basin outlet)
Defines the direction of flow on the edge
Description of feature type
Defines the edge as being either a flowline or a shoreline

<table>
<thead>
<tr>
<th>Field name</th>
<th>Data type</th>
<th>Allow null</th>
<th>Default value</th>
<th>Domain</th>
<th>Precision</th>
<th>Scale</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>OID</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Geometry</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td>Small Integer</td>
<td>Yes</td>
<td>1</td>
<td>EnabledDomain</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HydroID</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HydroCode</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>ReachCode</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Name</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LengthKm</td>
<td>Double</td>
<td>Yes</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LengthHm</td>
<td>Double</td>
<td>Yes</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FlowDir</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EdgeType</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>ShapeLength</td>
<td>Double</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HydroEdgeType

<table>
<thead>
<tr>
<th>Coded value domain</th>
<th>HydroFlowDirections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Field type</td>
</tr>
<tr>
<td>0</td>
<td>Flowline</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Subtypes of HydroEdge

<table>
<thead>
<tr>
<th>Subtype Code</th>
<th>Subtype Description</th>
<th>Default subtype</th>
<th>Default Value</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flowline</td>
<td>1</td>
<td>EnabledDomain</td>
<td>HydroFlowDirections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FlowDir</td>
<td>1</td>
<td>HydroFlowDirections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EdgeType</td>
<td>1</td>
<td>HydroEdgeType</td>
</tr>
<tr>
<td>2</td>
<td>Shoreline</td>
<td>1</td>
<td>EnabledDomain</td>
<td>HydroFlowDirections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FlowDir</td>
<td>1</td>
<td>HydroFlowDirections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EdgeType</td>
<td>1</td>
<td>HydroEdgeType</td>
</tr>
</tbody>
</table>
Integration of Surface Water and Groundwater Data

- Describe the relationship between surface water features (e.g., streams and water bodies) with groundwater features (aquifers, wells).
- Enable the connection with the surface water data model.
- Groundwater data model and tools developed and maintained by AQUAVEO.
What are Arc Hydro Tools?

- A set of freely available ArcMap-based tools that are a companion to the Arc Hydro data model
- Developed and maintained by ESRI Water Resources Team (not a core product or a sample)
- Hundred (150) + tools organized in one main and several supporting toolbars in ArcMap
 - Geoprocessing (toolbox) implementation of most of the existing tools. All new tools are developed in gp environment.
What do Arc Hydro Tools do?

• “Exercise” Arc Hydro data model (manage key identifiers—HydroID, JunctionID, Next DownID, etc.)

• Provide functionality common to water resources analyses
 - Terrain analysis
 - Watershed delineation and characterization
 - Tracing and accumulation through networks
 - Schema (node-link) development
 - Specialized data I/O (XML, Excel, etc.)
 - Customizable
“Why Should I Care” about Arc Hydro Tools?

- Economy of development
 - Why reinvent the wheel?
 - Established configuration methodology
 - Established development framework
- Industry “standard”
 - Established techniques rolled into a publicly available utility
- Training and support
- Free maintenance – ESRI’s commitment to the water resources community
 - Bug fixes
 - Performance optimization
 - Release updates
Arc Hydro Tools Documentation

- Online help
- Tutorial
- Various how-to documents
- Instructor-led training
Arc Hydro Demo
Hydrologic and Hydraulic Modeling Support with GIS
How “Things” Build Up

- Database design
- Data preparation
- Terrain preparation
- “Watershed” delineation
- “Watershed” characterization

- Parameterization

- Model pre- and postprocessing

Generic

Semigeneric

Model Specific
Section Overview

• Stream statistics
• Hydrologic modeling (HEC-HMS, GeoHMS)
• Hydraulic modeling (HEC-RAS, GeoRAS)
• H&H integration considerations
Hydrology: Stream Statistics
Regression Equations

- Used to estimate streamflow statistics, both high and low flows, for ungaged sites (in uncontrolled flow environment)
- Relate streamflow statistics to measured basin characteristics
- Developed by all 48 USGS districts on a state-by-state basis through the cooperative program (usually sponsored by DOT)
- Often not used because of large efforts needed to determine basin characteristics
- Users often measure basin characteristics inaccurately.
Example Regression Equation

- Regression equations take the form:

\[Q_{100} = 0.471A^{0.715}E^{0.827}SH^{0.472} \]

- Where

 - A is drainage area, in square miles
 - E is mean basin elevation, in feet
 - SH is a shape factor, dimensionless
Basin Characteristics Used for Peak Flows

<table>
<thead>
<tr>
<th>Basin characteristic</th>
<th># of States using this (including PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage area or contributing drainage area (square miles)</td>
<td>51</td>
</tr>
<tr>
<td>Main-channel slope (feet per mile)</td>
<td>27</td>
</tr>
<tr>
<td>Mean annual precipitation (inches)</td>
<td>19</td>
</tr>
<tr>
<td>Surface water storage (Lakes, ponds, swamps)</td>
<td>16</td>
</tr>
<tr>
<td>Rainfall amount for a given duration (inches)</td>
<td>14</td>
</tr>
<tr>
<td>Elevation of watershed</td>
<td>13</td>
</tr>
<tr>
<td>Forest cover (percent)</td>
<td>8</td>
</tr>
<tr>
<td>Channel length (miles)</td>
<td>6</td>
</tr>
<tr>
<td>Minimum mean January temperature (degrees F)</td>
<td>4</td>
</tr>
<tr>
<td>Basin shape ((length)2 per drainage area)</td>
<td>4</td>
</tr>
<tr>
<td>Soils characteristics</td>
<td>3</td>
</tr>
<tr>
<td>Mean basin slope (feet per foot or feet per mile)</td>
<td>2</td>
</tr>
<tr>
<td>Mean annual snowfall (inches)</td>
<td>2</td>
</tr>
<tr>
<td>Area of stratified drift (percent)</td>
<td>1</td>
</tr>
<tr>
<td>Runoff coefficient</td>
<td>1</td>
</tr>
<tr>
<td>Drainage frequency (number of first order streams per sq. mi.)</td>
<td>1</td>
</tr>
<tr>
<td>Mean annual runoff (inches)</td>
<td>1</td>
</tr>
<tr>
<td>Normal daily May-March temp (degrees F)</td>
<td>1</td>
</tr>
<tr>
<td>Impervious Cover (percent)</td>
<td>1</td>
</tr>
<tr>
<td>Annual PET (inches)</td>
<td>1</td>
</tr>
</tbody>
</table>

... and many others
Role of GIS

• Speed up the process (instead of hours, minutes).
• Provide a common (single) access to the methodology (for users and maintenance).
• Systematize methodology and datasets used in the process (repeatability).
• Provide better tools for deriving characteristics for regression equation determination.
• Provide a map-based user interface.
• Web and desktop implementation are based on Arc Hydro.
Arc Hydro Tools Role

- StreamStats fully implemented within Arc Hydro environment
 - Terrain preprocessing
 - Local and global watershed delineation
 - Extracting local characteristics
 - Assembly of global characteristics
- Characteristics developed for StreamStats available to wider audience (e.g., hydrologic modeling support)
- Desktop and Web implementations
StreamStats Implementation Activities

- USGS lead effort
- State-based
- ArcGIS Server technology
- Hosted in Denver
- Extended functionality

Source: http://water.usgs.gov/osw/streamstats/ssonline.html

July 2012
State Site (ID)
Need to zoom in to see the stream to snap on.
Watershed Delineation - Web
Results - Web

- **Watershed delineation**
 - 20-30 seconds, not much difference with respect to size of the watershed

- **Parameter computations**
 - 10s – 1 minute, depends on the region (what parameters to get) and somewhat on the size
H&H Integration Overview

(HMS-RAS Focus)
HEC-GeoHMS

- **HEC-GeoHMS**:
 - ArcGIS preprocessor for HMS
 - Transforms the drainage paths and watershed boundaries based on DEM into a hydrologic data structure that can be used to model the watershed response to precipitation
HEC-GeoRAS

- **HEC-RAS**: Hydrologic Engineering Center River Analysis System: allows performing one-dimensional open channel steady and unsteady flow calculations.
- **HEC-GeoRAS**:
 - Prepare geometric data for import into HEC-RAS
 - Processes simulation results exported from HEC-RAS
Integration Approach

- Mix of planning, GIS, and H&H modeling operations (not a push-button operation)

- Types of integration
 - Modeling support (preparing data for model input)
 - (e.g., land use/soils/CN or rainfall processing – Arc Hydro or general GIS data processing)
 - Linked
 - GeoHMS
 - GeoRAS
 - Integrated
 - DSS
Integration Approach (2)

- **Key steps**
 - Plan (roughly) hydrologic and hydraulic model layouts—flow exchange locations.
 - E.g., location of HMS modeling elements and RAS cross sections
 - Identify sources of precipitation input into the hydrologic model and techniques for their incorporation into the dataset.
 - E.g., Nexrad rainfall
 - Develop the GeoHMS model (and precipitation submodel).
 - Finalize and run the HMS model and generate results (DSS).
 - Develop the GeoRAS model.
 - Finalize and run RAS, taking HMS results as input.
 - Feedback between HMS and RAS is manual.
 - E.g., modification of time of concentration or routing parameters
Integration Planning

- Identify where outputs from one model (HMS) become input to the second one (RAS).
 - Place hydrologic elements (subbasins, reaches, junctions) to capture flows at points of interest (confluences, structures).
 - Place hydraulic elements (cross sections) at points of interest.
 - Identify/Specify element-naming conventions between the two models (persistent or transient names).
Precipitation Sources

• Identify sources of precipitation input into the hydrologic model and techniques for their incorporation into the dataset.
 - Point (rain gauge)
 - Polygon (Nexrad cells)
 - Surface (TIN/GRID)
Develop GeoHMS Model

- Follow all principles in development of a hydrologic model.
- In addition, take into consideration integration planning aspects developed earlier.
 - Placement of flow exchange points
 - Naming conventions
- Incorporate precipitation submodel.
 - Develop Arc Hydro time series for the final subbasin delineation and export to DSS.
- Export to HMS.
Meteorological Component

• Develop a custom “gauge” for each subbasin or for each rainfall observation element with corresponding weights for subbasins.

• Export the time series for the subbasin “gauge” from Arc Hydro time series data structure into DSS.
Finalize and Run HMS

- Complete HMS model with any additional parameters including meteorological model and control specifications.

- Follow all principles in HMS model development (calibration, etc.).
Finalize and Run HMS (2)

- Do the final run and generate results (DSS).

HMS View

DSS View
Develop GeoRAS Model (preprocessing)

- Follow all principles in development of a hydraulic model for element placement (confluences, structures, …)
- In addition, take into consideration integration planning aspects developed earlier
 - Naming conventions (add name of the HMS element to the cross-section that will get the element’s flows)
- Export to RAS
Finalize and Run RAS

- Complete RAS model with any additional parameters including initial and boundary conditions.

- Follow all principles in RAS model development (calibration, etc.).
Finalize and Run RAS (2)

- Do the final run and generate results (export to .sdf file).
Process RAS Results in GeoRAS

• Construct the floodplain based on the results in the .sdf.

• Review the results with respect to spatial integrity (extents of cross sections, ineffective flow areas, disconnected flood areas, etc.).

• Clean results.

• Revisit RAS.
GIS–HMS–RAS Feedback

- At present, it is manual and at the discretion of the modeler.
 - GIS–H&H interaction
 - H–H interaction

- Visualization in both pre- and postprocessing is not just a “pretty picture.”
 - Flyover in preprocessing (GeoHMS and GeoRAS)
 - Identification of data problems
 - Modeling element placement
 - Postprocessing (GeoRAS)
 - Validity of element placement
Floodplain Discontinuity
Floodplain Discontinuity (cont.)

Water surface profile

Terrain

Cross sections

“Dry”
Cross-Section Interpolation

TIN-interpolated cross sections

RAS-interpolated cross sections

RAS-assumed terrain

Terrain

Original cross sections
Summary
GIS provides many capabilities for support of H&H

- Integrated, multi-purpose database for storage of H&H and related data.
- Consistent methodology for spatial data processing and analytical functionality, such as terrain processing, watershed delineation and characterization.
- Pre- and post-processing for H&H models significantly reduces time for data preparation for modeling support.
- Environment for integrated solution management:
 - Emergency management
 - Design
 - Decision support
• Thank you for attending
• Have fun at UC2012
• Open for Questions

• Please fill out the evaluation:

 www.esri.com/ucsessionssurveys

 First Offering ID: 597
 Second Offering ID: 833