Full Field Decision Support

FIELD PLANNING AND DEVELOPMENT FOR UNCONVENTIONAL RESOURCES
Company Background

- Company founded in 2002
- Established as an Engineering Company
- Specializing in Geographic Information Systems
- Three core offices: Houston, Calgary, and St. John’s
- Staff of Engineers, Geologists, Geographers, and Computer Scientists
- Esri Business Partner (Silver Tier International)
Context

Full Field development for unconventional resources:

- Companies faced with aggressive schedules and production expectations
- Limited lead time for planning which focuses efforts on near term
- Pace and uncertainty limits ability to address broader field lifecycle
- Unexpected incremental investments diminish potential prize

Conscientious companies are concerned about costs and conservation.

Establishing estimates and controlling costs through Full Field planning provides a path to extracting more value.

Quality of decisions and completeness of plans can differentiate between businesses being wildly successful and barely sustainable.
Goals for Full Field Planning

1. Generate results that reduce impact and investment
2. Establish baseline for impact and investment
3. Generate multiple options in place of single solutions
4. Reduce effort needed to evaluate options
5. Provide a means of performing what-if scenarios
6. Keep pace with (or ahead of) planning process
7. Increase lead times, broader view for planning and execution
8. Produce reliable and repeatable results
9. Increase consistency in the planning process
10. Improve documentation of siting choice rationale
Components to Support Full Field Planning

Decision support system must:

- Consider uniqueness of each Asset Type with respect to modeling
- Allow for inputs in terms of Constraints and Constructability
- Produce Realistic Results
- Incorporate input from and expertise of Discipline Experts
- Include specialized Spatial Data Management processes and Analysis Techniques (GA, NN, LP)
- Retain Results and Analysis Artifacts for re-use
- Flex to changing business needs
Constraints and Constructability

DEFINING THE SOLUTION IN TERMS OF AFFINITY, AVOIDANCE, AND ABSOLUTE BARRIERS
Geologic and Drilling Constraints

- Structure Depth
- Lateral Spacing
- Lateral Orientation
- Dog-leg Severity
- Wells per pad
- Cut and Fill
- Lease Location
- Set-backs
Constraints: Construction, Logistic, and Regulatory

- Anthropogenic
- Environmental
- Geology
- Geotechnical
- Hydrography
- Infrastructure
- Land
- NoGo
- Vegetation
- Wildlife
Archeology

Vegetation

Land Use and Disturbances

Constraints
Realistic Results

GENERATING OPTIONS AND OUTCOMES
Well Siting

Well Siting analyses produce:
- Well Pad Locations
- Completable Areas
- Well Laterals
- Land Collectives

Land Collectives produce:
- Well Pad Locations
- Completable Areas
- Well Laterals
Road and Pipeline Solutions

- Continuous Solution
- Corridor Solution
- Centerline Solution
Connectivity

Layout for gathering systems and access roads have additional considerations such as:
- Minimizing overall length
- Varying diameters
- Varying traffic requirements
- Existing infrastructure

Building gathering systems and access roads must be able to account for:
- Existing infrastructure (ignore)
- Existing infrastructure (include)
- Proximity of facilities and Existing Infrastructure
Expert System

ENCAPSULATING EXPERT KNOWLEDGE FOR DECISION SUPPORT
Components to Support Full Field Planning

Decision support system must:

- Consider uniqueness of each Asset Type with respect to modeling
- Allow for inputs in terms of Constraints and Constructability
- Produce Realistic Results
- Incorporate input from and expertise of Discipline Experts
- Include specialized Spatial Data Management processes and Analysis Techniques (GA, NN, LP)
- Retain Results and Analysis Artifacts for re-use
- Flex to changing business needs
ArcGIS Platform

- Common tool in Energy companies
 - Used across multiple disciplines (e.g. environmental, engineering, geosciences, etc.)
- Ability to model complex Business and Spatial concepts
 - Some additional smarts needed to make ArcGIS Energy-industry-centric
- Core spatial analyses missing some context and specialization
 - Extensible to include high-end analyses techniques like GA, LP, NN
- Data management capabilities great for managing large amounts of data
 - Additional capabilities needed for managing multi-criteria, constraints, settings, parameters, etc.
- Numerous options for extending and deploying
 - Services, Extensions, Toolboxes, Add-ins
- Natural choice as a platform for Full Field decision support systems
- ArcGIS allows for Simplified, Streamlined, and Specialized workflows
Simplified

- Familiarity
- Usability
- Terminology
- Validation
- Documentation
Streamlined
Specialized
Shale-Gas in Developed Area

FIELD DEVELOPMENT IN RURAL AREA WITH SIGNIFICANT POPULATION AND INFRASTRUCTURE
Shale Gas in Developed Area

- **Geologic/Production parameters:**
 - Drilling in the Up-Dip Direction
 - Minimum length 3600 ft (economic)
 - Lateral spacing is 330 ft

- **Drilling parameters:**
 - Max dog-leg severity of 10 degrees / 100ft
 - Maximum length 7500 ft (technical)
 - Drill dual direction from pads
 - Step-out is 900 ft (maximum)

- **Well Pad parameters**
 - 200 ft x 300 ft well pad
 - Locate ‘On or Off Lease’
 - 3 wells per pad (single) 6 wells (dual)

- **Field rules for the region:**
 - 165 ft offset from lease line to well head
 - 165 ft offset from lease line to well heel
 - 165 ft offset from lease line to lateral
Full Field Decision Support

FIELD PLANNING AND DEVELOPMENT FOR UNCONVENTIONAL RESOURCES