GIS and ADMS for Smart Grid Data Analytics

Jared Waddell
GIS Specialist
Benton PUD

John Dirkman, P.E.
Smart Grid Product Manager
Schneider Electric

Esri User Conference
17 July 2014
Benton PUD Location

939 square miles in Benton County, Washington
Benton PUD Overview

- Number of Customers: 48,455
- Residential Electric Rate: $0.0605 / kWh
- 115 kV transmission lines: 91 miles
- Distribution lines: 1,596 miles
- Substations: 37
- Substation Capacity: 653 MVA
- System Peak (2009): 401 MW
- Transformers: 17,745
- Meters: 47,487
- Employees: 148
- Fuel Mix:
A global company
$34 billion revenue in 2013
43% of sales in new economies
160,000+ people in 100+ countries
committed to innovation
4-5% of sales devoted to R&D
~$1.5 billion devoted to R&D

Delivering Solutions for End Users

Utilities & Infrastructure 25%
Industrial & machines 22%
Data Centers 15%
Non-residential buildings 29%
Residential 9%

Some of the world class brands that we have built or acquired in our 175 year history

- SQUARE D
- TELVENT
- dtn
- AREVA
- INVENSY S
- APC
- XANTREX
- PELECO
- PowerLogic
- NU-LEC Industries
- Modicon
ArcGIS for Analytics
ArcGIS for Analytics
ArcGIS for Analytics
Custom Gas Autoupdaters

- SetInspectionStatus Autoupdater
 - Assigns a value to the InspectionStatus field for valves, exposed pipe, and regulators
 - InspectionStatus value is determined based on the value of the related inspection object’s InspectionDueDate and the current system date

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Symbology</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>Due In More Than 90 Days</td>
<td>green</td>
</tr>
<tr>
<td>90</td>
<td>Due Within 90 Days</td>
<td>yellow</td>
</tr>
<tr>
<td>30</td>
<td>Due Within 30 Days</td>
<td>orange</td>
</tr>
<tr>
<td>0</td>
<td>Out of Compliance</td>
<td>red</td>
</tr>
</tbody>
</table>
Custom Gas Autoupdaters

- CreateInspection Autoupdater
 - When an inspection is completed (the InspectionCompletionDate field populated by the user):
 1. create a new inspection record in the inspection table
 2. copy the RelatedFeatureOID field
 3. populate the InspectionDueDate field with a value of the InspectionCompletionDate field plus a duration read from a configurable table
Custom Gas Autoupdaters

SetPassFail Autoupdater

- When a user updates the RESULTS field for a Reading object, this AU writes a pass/fail value to the PassFail attribute.
- The pass/fail value shall depend on a comparison of values in a configurable table.

<table>
<thead>
<tr>
<th>Object</th>
<th>Comp</th>
<th>PassValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>RectifierReadings</td>
<td>GT</td>
<td>1.45</td>
</tr>
<tr>
<td>TestPointReadings</td>
<td>LT</td>
<td>0.34</td>
</tr>
</tbody>
</table>
How do Weather Services Help Prepare a Utility’s Response?

● Must address all types of weather causing outages
 ● Lightning
 ● Wind
 ● High heat/humidity
 ● Ice and heavy snow
 ● Hurricanes and tornados
 ● Heavy rain/flooding

● Visibility is key to preparedness
 ● What will happen?
 ● Precisely when?
 ● Where will service territory be impacted?

● Key decisions
 ● Crew on-call, holdover, and dispatch
 ● Pre-positioning and mid-storm positioning
 ● Mutual assistance calls – in both directions
 ● Materials requirements
Keys to Weather Preparedness

● Before event:
 ● High quality forecasts
 ● Expert meteorological consultation
 ● Alerting

● During/just before event:
 ● Real time lightning
 ● Nowcasting tools
 ● Current situational awareness
 ● GPS all-clear alerting

● After event:
 ● Post-storm inspection tools
During Storm - Improved Response

- Track and Manage Real Time Weather Information
 - Storm events: lightning, wind, heavy snow, ice
 - Crew safety and restoration
- Initiation of Restoration Activities
 - Track and predict outages via analytics
 - All-clear alerting
- Improved Situational Awareness
 - Internal Common Operating Picture (COP), including mobility
 - Call management functionality for customer trouble calls
After Storm

- **Reduced Restoration Time**
 - Predictive Outage Optimization
 - Crew management and optimization

- **Timely updates for public**
 - Accurate estimated time of restoration (ETR)
 - Public outage web maps

- **Damage Assessment**
 - Spatial relationship of weather events to network assets
 - Lightning strikes
 - Outage cause analysis

- **Feed back into future preparations**
 - Better crew positioning and equipment availability
 - Lightning arresters, switch placement, network reinforcement

\[
SAIDI = \frac{\sum U_i N_i}{\sum N_i} \quad \text{SAIFI} = \frac{\sum N_i}{N_T} \quad \text{CAIDI} = \frac{\sum U_i N_i}{\sum \lambda_i N_i} \quad \text{CAIFI} = \frac{\sum N_i}{CN}
\]
Spatial Relationships and Analytics

- GIS and Weather
- Relate weather forecast to GIS asset and network data
Event Alerts

- Automated Alerts when adverse weather is approaching
The Advanced DMS

DMS
- Network automation
- FLISR, VVO
- Energy Losses
- Relay Protection

SCADA
- Alarming
- Tagging
- Trending
- Switching Validation

OMS
- Incident, Fault
- Customer Call
- Switching, and Crew Mgmt and Reporting

EMS
- State Estimation
- AGC, Economic Dispatch
- Unit Commitment

DSM
- Load Forecast
- Distributed Energy Mgmt
- Demand Response

Common Platform, Database, Infrastructure, Security, History, and User Interface

Applications
- DMS
- SCADA
- OMS
- EMS
- DSM

Network Model Management

Realtime Infrastructure

Common User Experience, Integrated Components

Data, Performance, Calculation

Security, Scalability, Integration, Availability
ADMS Functionality

Train
- Real-time Simulation
- Off-line Simulation
- What-if Analysis
- Historical Playback

Plan
- Load Flow
- State Estimation
- Energy Losses
- Fault Calculation
- Reliability Analysis
- Relay Protection
- Device Capability
- Contingency Analysis

Optimize
- Telemetry
- Alarming
- Tagging
- Trending
- Reporting

Operate
- Volt/VAR Optimization
- Network Reconfiguration
- Near and Short-term Load Forecasting
- Demand Response
- Distributed Energy Mgmt.

Analyze
- Fault Management
- Switch Management
- Crew Management
- Under-load Switching
- Large Area Restoration
- Load Shedding

Monitor
- Outage Management
- Medium and Long-term Load Forecasting
- Network Automation
- Network Reinforcement
- Optimal Device Placement

ADMS Benefits
- Safety
- Reliability
- Efficiency
- Standardized Training
- Unified Interface
- Advanced Analytics
Over 180 control centers and 88M meters
Only ADMS to be awarded Gartner’s highest rating in 2012, 2013, 2014
Main Benefits of ADMS Analytics

Results of ADMS Operational Analytics can be used by the utility for:

- predictive Demand Response via network reconfiguration/switching, voltage reduction, volt/VAR optimization, and load shedding
- proactive maintenance from short circuit analysis and over-voltage, over-load, and over-temperature conditions
- predictive network reinforcement and optimal device placement
- other network analysis and prediction functions

Source: Enterprise CIO Forum
Playback and Snapshot Functions

Playback
- Via playback of prerecorded events, operators can observe past operating conditions through time and quickly and easily determine times and locations of network irregularities

Snapshot
- Snapshot functionality stores network topology and measured and calculated values during specific points in time
- Running a set of power applications on various data snapshots enables root cause analysis and comparison of problems occurring at different points in time
Historical Trending

- Historical trending analyzes historical measured and calculated values and manages comparison of trends
- Provides analysis capabilities for
 - Undervoltage
 - Overvoltage
 - Overload
 - Over generation
- Results of analysis are often the main driver for network reconfiguration and reinforcement, leading to lower grid maintenance costs
Violation Monitoring

- Violation Monitoring provides analysis of all under- and overvoltage, overload, and over generation periods corresponding with peaks in grid power.
- Analysis serves as the main driver for network reconfiguration and reinforcement and for subsequent lower grid maintenance costs.
Historical Analytical Subsystem (HAS)

- HAS captures snapshots of the ADMS model and stores measured and calculated values for all nodes in the grid in the topology hierarchy structure, providing a base for advanced trend analysis and reporting.
- The HAS service is a separate ADMS instance that uses extract, transform, and load (ETL) functionality to:
 - load snapshots from DMS history (extract)
 - analyze snapshots by running a user-configurable set of ADMS power applications
 - write the resulting data in a report-friendly schema (transform)
 - store in HAS database (load)
- HAS is delivered with set of predefined reports.
- Additional reports can easily be created combining data from both the HAS database and other ADMS databases, like DMS and OMS history.
Historical Analytical Subsystem (HAS)

- HAS provides value to utilities by providing a focused view of grid changes over time
- The analyses that can be executed can identify conditions such as
 - needed network reconfiguration
 - regional peaks in loading that can be smoothed
 - high frequency of over-temperature conditions that can lead to proactive maintenance
- Recorded results of short circuit analysis can identify sets of equipment that need to be replaced
- Recorded results of contingency analysis can identify the need for network reinforcement
ADMS Data Stored in HAS

- Switching Sequences are stored for later retrieval and execution
- Save Cases - snapshots of the network model state (switchgear statuses, measurement values, etc)
- Temporary element changes - historical information about setting/removing temporary elements
- Tag changes - historical information about setting and removing tags
- Network outage impacts - records about affected consumers per outage, number of outages per day, etc.
- VVO results - data generated from Volt/VAR Optimization (VVO) function by transformer areas, substations, and feeders
- Load model - changes to parameters of load models for characteristic consumer types are stored periodically together with changes of corrective load factors for consumer groups
HAS Control Panel

Processing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle period</td>
<td>15 min</td>
</tr>
<tr>
<td>Delay</td>
<td>24 hours</td>
</tr>
<tr>
<td>First cycle time</td>
<td>7/16/2013 10:30 AM</td>
</tr>
<tr>
<td>Max number of cycles</td>
<td>5</td>
</tr>
</tbody>
</table>

Calculation Period for Power Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Flow</td>
<td>1</td>
</tr>
<tr>
<td>State Estimation</td>
<td>2</td>
</tr>
<tr>
<td>Thermal Monitoring</td>
<td>0</td>
</tr>
<tr>
<td>Fault Calculation</td>
<td>0</td>
</tr>
<tr>
<td>Contingency Analysis</td>
<td>36</td>
</tr>
</tbody>
</table>

Processing Log

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Time</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Network Model</td>
<td>9/8/2013 9:31:46 AM</td>
<td>✔</td>
</tr>
<tr>
<td>Load Snapshots</td>
<td>9/8/2013 9:31:46 AM</td>
<td>✔</td>
</tr>
<tr>
<td>ETL engine</td>
<td>9/8/2013 9:32:10 AM</td>
<td>✔</td>
</tr>
</tbody>
</table>

Delete

- Last delete executed on: 9/8/2013 9:38:34 AM
- Last delete executed from: 7/16/2013 5:30:00 PM

Archive

- Last archive executed on: 9/8/2013 9:37:05 AM
- Last archive executed from: 7/16/2013 12:30:00 PM

Dearchive

- No snapshot dearchived

Clean

- Last clean executed on: 9/8/2013 9:37:05 AM
- Last clean executed from: 7/16/2013 12:30:00 PM
Summary and Questions

- GIS and ADMS provide sophisticated tools for data analytics
- Customizations can provide better data for analytics
- Understand your source data
- Analytics provide valuable, tangible benefits
- For more information on ADMS: http://www.schneider-electric-dms.com/ or contact me at john.dirkman@schneider-electric.com
- Questions?
Thank You!

Jared Waddell
GIS Specialist
Benton PUD

John Dirkman, P.E.
Smart Grid Product Manager
Schneider Electric

Esri User Conference
17 July 2014