Immersed 3D Visualization of the University of Chicago Campus

Scott Stocking, GISP
Facilities Services Department
Immersed 3D Visualization of University of Chicago Campus

- Discussion Outline
 - Objectives of the Project
 - Data Utilized
 - Methods Used to build the Model
 - CAVE2 Visualization Environment
 - Tricks/Lessons Learned
 - Next Steps
Immersed 3D Visualization of University of Chicago Campus

• Objectives of the Project
 – Create a 3D Composite of our existing data
 – Establish a common Data Model Framework
 – Identify Tools/Methods to Edit/Build the Model
Objectives of the Project

- Why do this?
 - Push to the most challenging 3D visualization environment available
 - Impact this environment has on Tools/Models
 - Issues presented will need to be addressed in the final data model - CityGML
 - Important since Visualization will be a key function Central Repository Model
Immersed 3D Visualization of University of Chicago Campus

• Data Utilized:
 – GIS: Building polygons, roads
 – CAD: Building floor plans
 – SketchUp: building exterior textures/photos
Immersed 3D Visualization of University of Chicago Campus

• Methods
 – GIS: CityEngine data for the ‘Base’ of the model roads and buildings - FBX
 – CAD: building footprints/ 3D CAD Model - FBX
 – BIM: Revit with FBX export into 3ds MAX
 – SketchUp: migrated to CityEngine via Collada
 – Used Unity Gaming software for final Model
Immersed 3D Visualization of University of Chicago Campus

- Methods: GIS CityEngine
Immersed 3D Visualization of University of Chicago Campus

- Methods: BIM – 3ds MAX
Immersed 3D Visualization of University of Chicago Campus

• Methods: GOOD, BAD and UGLY

 – **The GOOD:**
 - 3ds MAX was a staging environment for FBX exports of BIM models
 - Unity is ‘easy’ to use, advanced visualization tools

 – **The BAD:**
 - 3ds MAX tough to use with very large models
 - Software support for imports/export & results???

 – **The UGLY:**
 - Texture mapping is an Art!
 - Spatial placement of models is a manual process
Immersed 3D Visualization of University of Chicago Campus

- **Methods: Unity – 3D editing environment**
 - Can handle large imported models in FBX
 - Strong editing tools for 3D data
 - Used within advanced Visualization Environments
Immersed 3D Visualization of University of Chicago Campus
Immersed 3D Visualization of University of Chicago Campus
Immersed 3D Visualization of University of Chicago Campus

- Virtual Campus Specifications:
 - Over 2 million objects
 - 2,000 texture files: images and graphics
 - Total Model size: 2.5 GB
 - This is a small model – only 4 buildings are BIM models with interior spaces
Immersed 3D Visualization of University of Chicago Campus

- **CAVE2 – Virtual Reality System**
 - 320 degree panoramic 3D that matches human visual acuity
 - 480 SqFt of viewing surface
 - .029 inch per pixel resolution – 100 million pixels
 - 10 camera optical tracking system – uses glasses or ‘drive stick’ for navigation
Immersed 3D Visualization of University of Chicago Campus

• Tricks:
 – LOD for textures – turn off at large scales
 – Interior polygons/textures loaded at run time as we approach the building.
 – Center of the model (Origin) very important – must complete resolution of model as you migrate
Immersed 3D Visualization of University of Chicago Campus

• Lessons Learned
 – Data Models:
 • LOD & Map Scale
 • Textures do not map constantly from BIM or SketchUp.
 • Geometric conversions are tough – FBX most common supported format
 • How much attribution do we carry forward – semantics will be huge
 • We want the visualization environment to work for Catalog and Smart Cities/OWS down the road.
Immersed 3D Visualization of University of Chicago Campus

- Lessons Learned
 - Software: Not really ready to prime time – video gaming software cannot scale to detail or complexity of the virtual environments we want to present
 - Navigation and Management Tools are complex and hard to use.
 - Building vs. Campus level visualization
Immersed 3D Visualization of University of Chicago Campus

• Lessons Learned
 – Hardware:
 • It’s good and getting better all the time
 • Standard 64bit environments might not cut it for very large models (Campus or Citywide)
 • CAVE2 technology can handle the throughput on the images – no flicker to resolution issues
Immersed 3D Visualization of University of Chicago Campus

• Next Steps:
 – Determine the Visualization Software
 – Build the Virtual Campus in CityGML
 – Include other campus assets to the Model: Utilities
 – Establish best practices in Texture Management
 – ‘Plug and play’ Model components for buildings & utilities – State Plane, Data Formats etc.…
Immersed 3D Visualization of the University of Chicago Campus

Scott Stocking, GISP
University of Chicago
Facilities Services Department
5235 South Harper Court, Suite 1000
Chicago, Illinois 606015
773.834.0523 sastocking@uchicago.edu