African swine fever: ArcGIS for modeling risk of the disease spread

Fedor I. Korennoy

Federal Center for Animal Health (FGBI ARRIAH)

Vladimir, Russian Federation
Federal Center for Animal Health (FGBI ARRIAH)
http://www.arriah.ru

- OIE* Regional Reference Laboratory for Foot-and-mouth Disease (FMD) for Eastern Europe, Central Asia and Transcaucasia
- OIE Coordinating Center for Diagnosis and Control of Animal Diseases for Eastern Europe, Central Asia and Transcaucasia
- The Center produces biological preparations of high quality for prevention and treatment of animal diseases
- The Center carries out researches in the framework of several Federal scientific and technical programs as well as international projects

*OIE - Office International des Epizooties
currently World Organization for Animal Health
http://www.oie.int/
My department: The Center for Information and Analysis

- Monitoring of animal disease situation in Russia and abroad
- Disease mapping, modeling and forecasting
- Reporting to OIE
- Risk analysis in export/import operations with animals and food products

GIS

- Esri customers since 2007 (via Esri-CIS http://www.esri-cis.ru)
- ArcGIS for Desktop Advanced and Basic
- Spatial Analyst, 3D Analyst, Geostatistical Analyst, Data Interoperability
African Swine Fever (ASF)

- Contagious viral disease of domestic and wild pigs
- Near 100% mortality
- No vaccine
- No danger for human, but causes huge economic impact:
 - Total swine depopulation at the infected farm and within the risk zone of 5 – 20 km radius
 - Transportation and trade bans within the surveillance zone of 100 – 150 km radius
 - Affects the international pork market
- Currently endemic in the islands of Madagascar and Sardinia, in some African countries
ASF
Main transmission routes

- Direct contact between infected and susceptible pigs
- Transportation of live animals, pork products, contaminated fodders and garbage
- Wild pigs (boars) – usually considered secondary and hardly can spread the virus at large distances. But …
- *Ornithodoros* ticks – natural reservoir, but not present in Russia
ASF in Russia: 657 cases as of June 2014
2007:
2 cases in wild boar

- Introduction from Georgia is suspected
- ~60 cases were confirmed in Georgia in 2007
2008: 62 more cases
2009: 73 more cases
2010:
84 more cases
2011:
63 more cases
2012:
120 more cases
Two large ‘endemic zones’

Zone ‘North’

Zone ‘South’

Zone borders were defined using ‘Standard Distance’ tool
(ArcToolbox → Spatial Statistics Tools → Measuring Geographic Distributions) with 2-std radius

Those cases outside the endemic zones are considered ‘remote’
Cluster analysis. Zone ‘South’

1. Use ‘Grouping Analysis’ tool (ArcToolbox → Spatial Statistics Tools → Mapping Clusters) to identify significant spatio-temporal clusters of cases.

2. Use ‘Directional Distribution’ tool (ArcToolbox → Spatial Statistics Tools → Measuring Geographic Distributions) to reveal time-space trends of the epidemic spread within clusters.

Consider date of outbreak as weight parameter.
Cluster analysis.
Zone ‘North’

1. Use ‘Grouping Analysis’ tool (ArcToolbox → Spatial Statistics Tools → Mapping Clusters) to identify significant spatio-temporal clusters of cases.

2. Use ‘Directional Distribution’ tool (ArcToolbox → Spatial Statistics Tools → Measuring Geographic Distributions) to reveal time-space trends of the epidemic spread within clusters.

Outbreaks’ scattering out from the initial center can be due to extensive monitoring shooting of wild boars.

Consider date of outbreak as weight parameter.
Modeling risk

- Where to expect a next ASF outbreak?
- Which risk factors are associated with the ASF spread patterns?
- Is the current practice of surveillance zones (100 – 150 km radius) effective enough to prevent spread of the disease?
Study area

- Endemic zone ‘South’ as of December 2012
- Only the cases in domestic pigs were considered (N = 211)
Plan of modeling

1. Create a suitability map
 (define all areas where the ASF outbreak could occur considering underlying socio-economic and geographical conditions)

2. Given a most recent ASF outbreak estimate ring zone of most probable virus transmission

3. Combine suitability map with ring zone to obtain a risk map of the ASF emergence given a most recent outbreak
1. Suitability map

- Use **Maximum Entropy** modeling method
- Analyze a set of known location points vs a set of spatial explanatory variables
- Primary use in health and ecology: ecological niche modeling (i.e. identification of habitat area of some particular species given its observed locations)
- Here we use socio-economic and geographical variables instead of environmental:
 - **Swine population density**
 - **Human population density**
 - **Road network density**
 - **Density of settlements (towns, villages)**
- All densities were calculated by ‘Kernel Density’ tool (ArcToolbox \rightarrow Spatial Analyst Tools \rightarrow Density), then converted to ASCII format (ArcToolbox \rightarrow Conversion Tools \rightarrow From Raster)
MaxEnt output – probability of observing an outbreak considering a combination of explanatory variables

MaxEnt output overlaid with the base map in ArcGIS

Raster conversion from ASCII to Esri grid was used

(ArcToolbox → Conversion Tools → To Raster)
Suitability map:

Indicates most suitable areas for ASF emergence

Comes from human presence and agricultural activity
2. Ring zone of probability

- Consider all existing ASF outbreaks a sequence of random events sorted by the date of occurrence
- Calculate distances in each pair of subsequent outbreaks
- Fit a distribution to the set of distances

Hawth’s Tools for ArcGIS was used: http://spatialecology.com
Ring zone of probability

- Gives an idea of a distance of most probable virus transmission from the affected farm

A raster surface centered at the affected farm decreasing exponentially $\sim \exp(-x / \mu)$, where x is a distance from the farm, $\mu = 156.01$ km
... in 3D view (using ArcScene)

\[F(x) = \exp\left(-\frac{x}{\mu}\right) \]
Important finding…

Mean risk distance of 156 km exceeds the conventional radius of surveillance zone (100 – 150 km) that clearly indicates weakness of current measures of disease prevention!
3. Combine suitability surface and ring zone to obtain final risk map

Use raster calculator
(ArcToolbox → Spatial Analyst Tools → Map Algebra)
to multiply two rasters...
Final risk map

Recently affected farm ('index case')
Conclusions

- Indicates the areas of risk of the disease spread from a recently affected farm → allows predicting an area of a next ASF outbreak
- Clearly demonstrates that the practice of 100-km surveillance zones can hardly prevent the spread of the disease
- Considers the real-world distribution of pig population and thus better defines a potential surveillance zone
• This study is published in
 Spatial and Spatio-Temporal Epidemiology journal, 2014:

 (currently in press)

 F.I.Korennoy, V.M.Gulenkin, J.B.Malone, C.N.Mores, S.A.Dudnikov, M.A.Stevenson

Acknowledgements

- Federal Center for Animal Health (FGBI ARRIAH), Vladimir, Russia
- Federal Service for Veterinary and Phytosanitary Surveillance, Moscow, Russia
- United States Department of Agriculture (USDA), USA
- Louisiana State University, Baton Rouge, LA, USA
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA, USA
- USDA Centers for Epidemiology and Animal Health, Fort Collins, CO, USA
- International Society of Geospatial Health GnosisGIS (http://www.gnosissgis.org/)
Thank you for your attention!