Concepts and Applications of Kriging
Eric Krause
Konstantin Krivoruchko
Outline

- Introduction to interpolation
- Exploratory spatial data analysis (ESDA)
- Using the Geostatistical Wizard
- Validating interpolation results
- Empirical Bayesian Kriging
- Areal Interpolation
- Questions
What is interpolation?

- Predict values at unknown locations using values at measured locations
- Many interpolation methods: kriging, IDW, LPI, etc
What is autocorrelation?

Tobler’s first law of geography:

"Everything is related to everything else, but near things are more related than distant things."
What is kriging?

- Kriging is the optimal interpolation method if the data meets certain conditions.
- What are these conditions?
 - Normally distributed
 - Stationary
 - No trends
- How do I check these conditions?
 - Exploratory Spatial Data Analysis (ESDA)
What is an “optimal” interpolator?

- Estimates the true value, on average
- Lowest expected prediction error
- Able to use extra information, such as covariates
- Filters measurement error
- Can be generalized to polygons (Areal interpolation, Geostatistical simulations)
- Estimates probability of exceeding a critical threshold
Geostatistical workflow

1. Explore the data
2. Choose an interpolation method
3. Fit the interpolation model
4. Validate the results
5. Repeat steps 2-4 as necessary
6. Map the data for decision-making
1. Where is the data located?
2. What are the values of the data points?
3. How does the location of a point relate to its value?
Does my data follow a normal distribution?

- How do I check?
 1. Histogram
 - Check for bell-shaped distribution
 - Look for outliers
 2. Normal QQPlot
 - Check if data follows 1:1 line

- What can I do if my data is not normally distributed?
 - Apply a transformation
 - Log, Box Cox, Arcsin, Normal Score Transformation
Does my data follow a normal distribution?

- What should I look for?
 - Bell-shaped
 - No outliers
 - Mean ≈ Median
 - Skewness ≈ 0
 - Kurtosis ≈ 3
Does my data follow a normal distribution?
Normal Score Transformation

- Fits a smooth curve to the data
- Performs a quantile transformation to the normal distribution
- Performs calculations with transformed data, then transforms back at the end
- Simple kriging with normal score transformation is default in ArcGIS 10.1 and beyond
Is my data stationary?

• **What is stationarity?**
 - The statistical relationship between two points depends only on the distance between them.
 - The variance of the data is constant (after trends have been removed)

• **How do I check for stationarity?**
 - Voronoi Map symbolized by Entropy or Standard Deviation

• **What can I do if my data is nonstationary?**
 - Transformations can stabilize variances
 - Empirical Bayesian Kriging
Is my data stationary?

• When symbolized by Entropy or StDev, look for randomness in the symbolized Thiessen Polygons.
Is my data stationary?

- When symbolized by Entropy or StDev, look for randomness in the symbolized Thiessen Polygons.
Does my data have trends?

• What are trends?
 - Trends are systematic changes in the values of the data across the study area.

• How do I check for trends?
 - Trend Analysis ESDA tool

• What can I do if my data has trends?
 - Use trend removal options
 - Potential problem – Trends are often indistinguishable from autocorrelation and anisotropy
 - EBK
Semivariogram/Covariance Modeling

\[\gamma(h) \]

- Partial Sill
- Sill
- Nugget
- Range
- Distance \(h \)

Model
Cross-validation

- Used to determine the quality of the model
 - Iteratively discard each sample
 - Use remaining points to estimate value at measured location
 - Compare predicted versus measured value
Kriging output surface types

- Prediction
- Error of Predictions
- Probability
- Quantile
Kriging

Eric Krause
Empirical Bayesian Kriging (EBK)

- Spatial relationships are modeled automatically
- Results often better than interactive modeling
- Uses local models to capture small scale effects
 - Doesn't assume one model fits the entire data
Empirical Bayesian Kriging

• Advantages
 - Requires minimal interactive modeling
 - Standard errors of prediction are more accurate than other kriging methods
 - More accurate than other kriging methods for small or nonstationary datasets

• Disadvantages
 - Processing is slower than other kriging methods
 - Limited customization
How does EBK work?

1. Divide the data into subsets of a given size
 - Controlled by “Subset Size” parameter
 - Subsets can overlap, controlled by “Overlap Factor”
2. For each subset, estimate the semivariogram
3. Simulate data at input point locations and estimate new semivariogram
4. Repeat step 3 many times. This results in a distribution of semivariograms
 Controlled by “Number of Simulations”
5. Mix the local surfaces together to get the final surface.
Empirical Bayesian Kriging

Eric Krause
Areal Interpolation

- Predict data in a different geometry
 - School zones to census tracts
- Estimate values for missing data
Types of Areal Interpolation

- **Average (Gaussian)**
 - Median age, average temperature

- **Rate (Binomial)**
 - Cancer rates, obesity rates, percent of college graduates

- **Event (Overdispersed Poisson)**
 - Animal counts, crimes
Polygon to Polygon Workflow
Areal Interpolation
Eric Krause
Available in the bookstore and from Esri Press
Thank you...

• Please fill out the session survey:

Offering ID: 1321

Online – www.esri.com/ucsessionssurveys
Paper – pick up and put in drop box