Data Alignment and Management in ArcMap

Lisa Stanners, Sean Jones
Agenda

• The need for data alignment
• Review tools available for improving spatial accuracy of your data
 - Spatial adjustment & Rubbersheeting
 - Snapping capabilities, tracing tools, auto-complete, etc.
 - Alignment tools
• Review tools available to maintaining accuracy & coincidence
 - Map Topologies & Geodatabase Topologies
Data Alignment

• Many GIS domains have continuous data (Forestry, geology, land use, parcels, etc.)
• Spatially accurate data not always a priority
• Data sharing increased demand for accuracy
Data Alignment

Common scenarios:

1. Editing without regards to spatial integrity.
2. Different data sources.
3. Features created or updated at different points in time.
4. Features created at different map scales.
Spatial Adjustment

Projections

- Shift data between coordinate systems
Spatial Adjustment
Transformations

• Shift data in coordinate space
 - Digitize coordinates to real world
 - CAD coordinates to real world
 - Meters to Feet
Spatial Adjustment

Rubber Sheeting

- Aligns local data
- Integrating data from different scales and sources
 - Integrate 250K Hydro features into 50K data
 - Align national roads with local roads
Spatial Adjustment Demo
Summary of Adjustment Process

- Create Links
- Set Adjust source
- Set Adjustment Method
- Preview
- Adjust
Keeping Your Data Aligned

- Know what the basic tools are and how to use them
 - Snapping environment
 - Basic snapping
 - “Classic” snapping
 - Snap to feature
 - Auto-Complete (polygon and freehand)
 - Trace construction tool
 - Extend and Trim tools
 - Auxiliary anchor (Rotate and Scale tools)
Keeping Your Data Aligned

- New tools introduced at 10.1 to help with this process:
 - Align To Shape – adjust layers to traced shape
 - Align Edge – snap edges together to close gaps
Geoprocessing Alignment Tools

- **Snap** – bulk snapping based on user specified rules
 - Edit session

- **Integrate**
Aligning Data Demo
Topologies – Why would you want to use one?

Two main reasons for using a topology:
1. Tools for editing coincident geometries between feature classes
2. Tools for finding and fixing errors based on rules you define
Topologies – What kinds are there?

Two types of topologies:

1. Map Topologies (requires only ArcView license)
 - Can be used with feature classes or shapefiles in same workspace
 - Not persisted, but saved in map document

2. Geodatabase Topologies (requires ArcEditor license)
 - Allows rules to be defined and errors found
 - Must be used with feature classes in same dataset
 - Persisted in the database
Topologies – Editing coincident geometries

- Tools to select topology elements
 - Topology Edit Tool
 - Topology Edit Trace Tool

- Tools to update topology elements
 - Modify Edge
 - Reshape Edge
 - Align Edge
 - Generalize Edge
 - Reconnect Nodes
Topology Editing
Tools Demo
Geodatabase Topologies – Topology Rules

• 32 topology rules
• Single or multiple feature classes
• Apply to feature class or subtype level
• Categorized by geometry type (polygon, line, point)
• Examples
 - Soil polygons can’t have gaps between them
 - Parcels can’t overlap
 - Address points must be inside parcels
Geodatabase Topologies – Validating a Topology

• Integrates geometries based on a cluster tolerance
 - **Cracking** – Vertices added at intersections of feature edges
 - **Clustering** – Snapping vertices that fall within cluster tolerance

• Validates topology rules which may generate errors
 - Deletes errors if the rules are no longer violated

• No new features are created
Geodatabase Topologies – Error Inspector

- Error Inspector lets you view and fix topology errors in a table.
 - The rule violated
 - The feature class or classes involved in the error
 - The geometry of the error
 - The feature ID of the features involved in the error
 - Whether or not the error has been marked as an exception
Geodatabase Topologies – Editing Errors

- Topology errors represent violations of topology rules. Need to edit the features to remove the topology errors.
 - Errors cannot be deleted directly, the features must be edited and the topology re-validated
 - Three options for correcting errors:
 - Leave the error in the database
 - Fix the error
 - Elevate the error to exception status. This allows you to say this rule applies everywhere except ‘here’
Geodatabase Topologies – Editing Errors

• Select the topology errors on the map
 - Creates an “Active Error Selection”
 - Context menu with fixes based on rule

• Revalidate after edits
Topology Errors Demo
Summary of Topologies

• If you just need to edit coincident boundaries – consider a map topology
• If you need to define and validate rules – use a geodatabase topology
• With geodatabase topologies:
 - Build and validate to improve spatial integrity between your data layers
 - Use the available editor tools to find and fix your errors
 - Use automated fixes as much as you can, but they aren’t the answer for every error
Thank you...

• Please fill out the session survey:

 First Offering ID: 1311
 Second Offering ID: 1395

Online – www.esri.com/ucsessionssurveys
Paper – pick up and put in drop box