Development of Mosaic Datasets and Image Services for Bathymetric Data

Jesse Varner – Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado

John Cartwright – NOAA National Centers for Environmental Information (NCEI)
NOAA Data Center Consolidation

- NOAA’s Data Centers have merged into the National Centers for Environmental Information (NCEI)

- Former data centers:
 - National Geophysical Data Center – Boulder, CO
 - National Climatic Data Center – Asheville, NC
 - National Oceanographic Data Center – Silver Spring, MD
 - Includes National Coastal Data Development Center - Stennis, MS
NOS Hydrographic Surveys

- NOAA National Ocean Service performs hydrographic surveys in U.S. coastal waters
- Used by NOAA Office of Coast Survey for nautical chart production
- Since early 1800s
- Survey data is archived, stewarded, and made available to the public by NCEI, Boulder, CO
- Modern surveys since 2001 provide Bathymetric Attributed Grids (BAGs)
- ~5800 BAGs from ~1200 surveys
- Archive continually growing at 5-10 surveys per month
Bathymetric Attributed Grid (BAG) Characteristics

- HDF5 format
- Two 32-bit floating-point bands: elevation and uncertainty
- Datum is usually Mean Lower Low Water (MLLW)
- Projections: various local UTM zones
- Wide range of cell sizes from ~25 cm to >30 m
- Some gzipped, some are newer compressed BAGs
Spatial Layout of BAGs

- BAGs are overlapping, lower-res in deep water, higher-res in shallow water
- Irregularly-shaped coverage
- For mosaic: higher-res on top of lower-res
First Step: Stage BAGs as TIFF

- To simplify, first stage all BAGs as Web Mercator GeoTIFFs
 - Discard band 2 (uncertainty); not needed for mosaic
 - Project all source rasters to Web Mercator
 - `gdalwarp -r cubic -t_srs epsg:3857`
 - Build pyramids for all source rasters
 - `gdaladdo -r average`
 - Does a good job minimizing aliasing/moiré effects
 - LZW compression
 - `gdal_translate -co "COMPRESS=LZW" -co "PREDICTOR=2" -co "TILED=YES"`
- Total Size: ~165 GB
Create and Populate the Mosaic Dataset

- Create new mosaic dataset ‘bag_bathymetry’
- Single-band, 32-bit float
- Add all source rasters
- Mosaic method: order by attribute (lowPS), ascending
- For all rows, set minPS=0, maxPS=99999
 - Ensures all rasters are visible at all scales, for later overview generation
Build Footprints Only for Rasters with Very Large Geographic Extent

- A few BAGs are composed of narrow strips of data, but the rectangular footprint covers a very large area
- Build irregular footprints for these:
 - Build Footprints tool (radiometry) -> Simplify -> Buffer -> re-import
- With fewer areas of NODATA, subsequent overview-generation steps are simplified
- Not feasible to build footprints for all rasters – too many vertices bogs it down
Build Footprints Only for Rasters with Very Large Geographic Extent

D00168_UTM03_MB_8m_MLLW_2of5, northern Alaska
Define the Overview Schema

- **Objective:** to consistently control the visibility scales of overviews and source rasters
- **Source rasters:** visible from 0 (fully-zoomed in) to pixel size = 4m
- **Overviews start at 4m threshold**
 - Overview sampling factor 2 \((4m, 8m, 16m, 32m, 64m, \ldots) \)
- **Overviews are defined everywhere, even if that results in up-sampling**
 - Temporarily set lowPS=4 for all source rasters, then run “Define Overviews”
Mosaic Dataset Visibility Scales

Overviews

L01: minPS=4; maxPS=8
L02: minPS=8; maxPS=16
L03: minPS=16; maxPS=32
LOC: minPS=8192; maxPS=999999

Source Rasters

minPS=0; maxPS=4
Overview “Tiles” – complete coverage within boundary
Build the Overviews

- Takes ~11 hours
- Recompress the overviews using GDAL to save space
 - `gdal_translate -co "COMPRESS=LZW" -co "PREDICTOR=2" -co "TILED=YES"`
 - Size reduced from ~73 GB to ~53 GB
- Total size of source rasters + overviews: ~220 GB
- Deploy imagery to server
- Repair paths in mosaic dataset
 - Replace Windows paths with Linux
Color-Hillshade Function Chain

- Combination of elevation colors and grayscale hillshade
- No Alteration of Grayscale or Intensity (NAGI) fusion method, see articles and blog posts by Rajinder Nagi (Esri)
- Elevation Void Fill function used to prevent thin lines from disappearing (Hillshade doesn’t compute to edge)
Server-Side Function Templates

- Slope (numeric), Slope (RGB), Aspect (numeric), Aspect (RGB), Grayscale Hillshade
- Function templates borrowed from Esri’s Elevation Services

Grayscale Hillshade | Color Hillshade | Slope RGB Map | Aspect RGB Map
Deploy ArcGIS Image Services

- **3 related image services:**
 - **bag_bathymetry**
 - Provides elevation values
 - Functions: Slope, Slope RGB map, Aspect, Aspect RGB map, Grayscale Hillshade, Color Hillshade
 - **bag_hillshades**
 - Color-Hillshade function “baked-in”
 - Cached (tiled) image service – zoom levels 0-16, to level 17 in select areas
 - **bag_hillshades_subsets**
 - Color-Hillshade function “baked-in”
 - Subsets allowed using definition queries – e.g. BAGs from a single survey
 - Up to 80 source rasters only; no overviews
 - Used on NOS survey products pages “preview map”
Screenshots

Long Island Sound
Mattole Canyon, CA
Screenshots

Columbia River, WA/OR
Screenshots

Coral reefs, Puerto Rico
Shipwreck near mouth of Chesapeake Bay
Screenshots

New York City
NOAA Seamless Raster Navigational Charts (RNC) mashup
Bathymetric Data Viewer

http://maps.ngdc.noaa.gov/viewers/bathymetry
Report for H11972

Locality: Pacific Ocean - Northern California
Sublocality: Vicinity of Point Delgada
State(s) or Region(s): California
Start Date: 2008-11-29
End Date: 2008-10-18

These data are not to be used for navigation.
For navigation please refer to NOS Nautical Charts.
Downloads may take a long time, depending on file size and data transfer.

Survey Products

Descriptive Report and Metadata Documents

NOAA/NOS Descriptive Report
H11972.pdf 2.88Mb
The document may be read using a free Adobe Reader.

NOAA/NOS ISO metadata record
H11972 View / Download H11972.xml
Usually presented as an XML document, which captures the basic characteristics of HSMD8 metadata verified from H10000 (1982) to the present as well as F00200 (1995) to the present.

NOAA/NOS Survey Rap Sheet
H11972 Rap Sheet
An HTML document with geography, platform, reference system information and links to affected products from HSMD8 metadata verified from H10000 (1982) to the present as well as F00200 (1995) to the present.

Bathymetry

Survey products may use different units, datum or projections than the associated survey. Please consult product-specific metadata for additional details.

Bathymetric Attributed Grid (BAG) Data

The BAG format is a gridded, multi-dimensional bathymetric data file (see Open Navigation Surface).
Readable with various applications such as the free CARIS Easy View, ERDMS or open source GDAL. The BAGXYZ files are ascii representations of the BAG data in XYZ format, but do not include uncertainty.

H11972_MB_3m_MLLW_5064.bag.gz 32.05Mb
H11972_MB_3m_MLLW_4549.bag.gz 56.45Mb
H11972_MB_3m_MLLW_3375.bag.gz 191.49Mb
H11972_MB_3m_MLLW_0616.bag.gz 667.13Mb
H11972_MB_3m_MLLW_0616.bag.gz 332.64Mb
H11972_MB_10m_MLLW_Combined.bag.gz 9.81Mb
H11972_MB_10m_MLLW_6086.bag.gz 448.71Mb
ArcGIS Online (NOAA GeoPlatform)

- **BAG Image Service:**
 http://noaa.maps.arcgis.com/home/item.html?id=2320b46f76c34230a72a70029a970f64

- **BAG Shaded Relief Visualization:**
 http://noaa.maps.arcgis.com/home/item.html?id=af0614c88e0d4cad9a72115a944b37ff

- **Combined map with survey polygons:**
 http://noaa.maps.arcgis.com/home/item.html?id=26ee4c6159b842219cb9729b9ef1b881
Questions?

Jesse.Varner@noaa.gov
John.C.Cartwright@noaa.gov