Spatial Analysis on Environmental Justice in Los Angeles County

Chungeun Koo
Master Student, Department of Urban and Regional Planning, Cal Poly Pomona

Do Kim, Ph.D.
Associate Professor, Department of Urban and Regional Planning, Cal Poly Pomona

Simon Choi, Ph.D., AICP
Chief of Research and Forecasting, Southern California Association of Governments
Why Environmental Justice (EJ)

• Integrate the principles of Environmental Justice into SCAG’s transportation plan
 – Low-income and minority communities should have ample opportunity to participate in transportation decisions
 – They should receive an equitable distribution of benefits and not a disproportionate share of burdens
Legal Background of EJ

– **Title VI**
 - Avoid, minimize, or mitigate adverse effects, on sensitive population
 - Ensure the participation by all in the transportation decision-making process

– **SB 535 (Greenhouse Gas-Reduction Investments to Benefit Disadvantaged Communities)**
 - Requires Cal/EPA to identify disadvantaged communities
 - Requires that at least 10 percent of the available moneys must be directly allocated in disadvantaged communities
Research Goals

• Identification of areas with Environmental Justice (EJ) concerns in Los Angeles county
 – Focusing on air quality
 – Unit of Analysis = Census Tract

• Analysis on transportation and land use contributing factors to the EJ areas
Identification of EJ Areas

- Quantifying and aggregating 4 aspects of EJ by Census Tract

<table>
<thead>
<tr>
<th>Variables</th>
<th>Source of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality</td>
<td></td>
</tr>
<tr>
<td>Particulate Matter 2.5 (PM 2.5)</td>
<td>CalEnviroScreen (PM 2.5, DPM, & Ozone)</td>
</tr>
<tr>
<td>Diesel Particulate Matter (DPM)</td>
<td>SCAG (PM 2.5, CO₁, CO₂, & Nitrogen)</td>
</tr>
<tr>
<td>Ozone, CO₁, CO₂, Nitrogen</td>
<td></td>
</tr>
<tr>
<td>Sensitive population</td>
<td></td>
</tr>
<tr>
<td>Minority Population, Persons below Poverty</td>
<td>U.S. Census (2013 ACS 5-yr. Est.)</td>
</tr>
<tr>
<td>Senior Population, Child Population, Renters</td>
<td></td>
</tr>
<tr>
<td>Educational Attainment</td>
<td></td>
</tr>
<tr>
<td>Unemployed Population</td>
<td></td>
</tr>
<tr>
<td>Population without an Automobile</td>
<td></td>
</tr>
<tr>
<td>Public health</td>
<td></td>
</tr>
<tr>
<td>Low Birth Weight</td>
<td>CalEnviroScreen 2.0</td>
</tr>
<tr>
<td>Asthma-related Emergency Visits</td>
<td>California Department of Public Health (CDPH)</td>
</tr>
<tr>
<td>Women, Infant, and Children (WIC) Vendors</td>
<td></td>
</tr>
<tr>
<td>Environmental nuisance</td>
<td></td>
</tr>
<tr>
<td>Solid Waste Facilities, Superfund Sites</td>
<td></td>
</tr>
<tr>
<td>Clean-Up Sites</td>
<td></td>
</tr>
</tbody>
</table>
Air Quality Variables and Score

- PM 2.5 (EnviroScreen)
- Diesel PM
- Ozone
- PM 2.5 (SCAG)
- CO$_1$
- CO$_2$
- Nitrogen

Air Quality Score
Sensitive Population Variables and Score

- Minority
- Poverty
- Senior
- Child
- Renters
- Education
- Unemployment
- No Automobile

Sensitive Pop. Score
PH & EN Variables and Score

- WIC Vendors
- Asthma
- Low Birth Weight
- Solid Waste
- Clean-up
- Superfund

PH & EN Score
Identification of EJ Areas

• Identifying the areas with the concentration of high score by conducting spatial cluster analysis (Getis-Ord Gi*)
Identification of EJ Areas

- Air quality Score
- Sensitive population Score
- PH & EN Score

Cluster areas

Spatial Cluster Analysis

Overlaying

EJ areas

Air Quality
Sensitive Population
PH & EN

ESRI UC 2015
Map of EJ Areas

256 Census Tracts out of 2,343
Analysis of Contributing Factors

• Analysis of factors that potentially associate with EJ areas in these physical aspects
 – Transportation
 – Land Use

• Quantifying a variety of variables by Census Tract using GIS analysis

• Identifying the potential contributing factors by conducting statistical analysis
 – T-Test
 – Logistic Regression
Analysis of Transportation Factors

• Variables analyzed
 – Highway/Roadway
 • Roadway lane mile
 • Highway land mile
 • Automobile speed
 – Public Transit
 • TOD stations (Y/N)
 • Transit stations (Y/N)
 • Bus stop density
 – Active Transportation
 • Bicycle facility density
 • Bicycle collision density
 • Intersection density
 – Railroad
 • Freight rail distance

• Data sources
 – SCAG
 – NTAD
 – LA Metro
Highway/Roadway Factors

- Highway Lane Miles
- Roadway Lane Miles
- Automobile Speed

Linear Density Analysis

ESRI UC 2015
Public Transit Factors

- Within 0.5 Mile from Transit Stations
- Within 0.5 Mile from TOD Stations
- Bus Stops

Buffer Analysis

Point Density Analysis

ESRI UC 2015
Active Transportation Factors

- Intersection
- Bicycle Facility
- Bicycle Collision

Point Density Analysis
Linear Density Analysis
Point Density Analysis

ESRI UC 2015
Railway Factor

Weighted Distance From Freight

Weighted Distance Analysis
T-Test and Logistic Regression Output

Logit

<table>
<thead>
<tr>
<th>Methods</th>
<th>Coef.</th>
<th>S.E.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-5.840</td>
<td>1.257</td>
<td>0.003</td>
</tr>
<tr>
<td>TOD (Y=1, N =0)</td>
<td>0.369</td>
<td>0.403</td>
<td>1.446</td>
</tr>
<tr>
<td>Transit (Y=1, N =0)</td>
<td>***-1.054</td>
<td>0.180</td>
<td>0.348</td>
</tr>
<tr>
<td>Freight Rail</td>
<td>***-0.001</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Bus Stop</td>
<td>***0.002</td>
<td>0.000</td>
<td>1.002</td>
</tr>
<tr>
<td>Bike Route</td>
<td>-0.056</td>
<td>0.045</td>
<td>0.946</td>
</tr>
<tr>
<td>Bike Crash</td>
<td>***3.908</td>
<td>0.718</td>
<td>49.822</td>
</tr>
<tr>
<td>Highway</td>
<td>-5.129</td>
<td>6.451</td>
<td>0.006</td>
</tr>
<tr>
<td>Roadway</td>
<td>-2.657</td>
<td>3.800</td>
<td>0.070</td>
</tr>
<tr>
<td>Speed Limit</td>
<td>***0.096</td>
<td>0.032</td>
<td>1.100</td>
</tr>
<tr>
<td>Intersection</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Cox & Snell R^2: 0.398

T-Test

<table>
<thead>
<tr>
<th>Methods</th>
<th>EJ Areas (Mean)</th>
<th>Non EJ Areas (Mean)</th>
<th>T-Stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOD (Y=1, N =0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transit (Y=1, N =0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Freight Rail</td>
<td>6584.473</td>
<td>11652.534</td>
<td>***-11.268</td>
</tr>
<tr>
<td>Bus Stop</td>
<td>812.763</td>
<td>246.736</td>
<td>***9.031</td>
</tr>
<tr>
<td>Bike Route</td>
<td>1.620</td>
<td>1.390</td>
<td>1.621</td>
</tr>
<tr>
<td>Bike Crash</td>
<td>0.218</td>
<td>0.081</td>
<td>***1.969</td>
</tr>
<tr>
<td>Highway</td>
<td>0.021</td>
<td>0.010</td>
<td>***1.968</td>
</tr>
<tr>
<td>Roadway</td>
<td>0.086</td>
<td>0.079</td>
<td>***1.967</td>
</tr>
<tr>
<td>Speed Limit</td>
<td>36.489</td>
<td>33.681</td>
<td>***1.968</td>
</tr>
<tr>
<td>Intersection</td>
<td>1.59</td>
<td>1.081</td>
<td>***1.968</td>
</tr>
</tbody>
</table>

* *, **, *** Correlations are significant at the 0.10, 0.05, and 0.01 levels, respectively (2-tailed)

The variable, Intersection, was excluded from the logit regression due to its' multicollinearity.
Summary of Findings

- Logistic regression shows notable differences between bus stops and distance to freight rail.
- TOD's have no relationship with EJ areas.
- Surprisingly, there is no correlation of the EJ areas with highway and roadway features.
Analysis of Land Use Factors

- Variables analyzed
 - Residential
 - Multi-family residential
 - Single family pervious surface
 - Non-residential
 - Industrial
 - Retail
 - Office
 - Open space

- Data sources
 - SCAG
 - LA County GIS Portal
Residential Factors

Multi-Family Residential

SF Pervious Surface

Building Density Analysis

Property Area – Building Footprint
Non-Residential Factors

Building Density Analysis

Property Density Analysis

Office

Retail

Industrial

Open Space
T-test and Logistic Regression Outputs

Variables

<table>
<thead>
<tr>
<th>Method</th>
<th>EJ Areas (Mean)</th>
<th>Non EJ Areas (Mean)</th>
<th>T-Stat.</th>
<th>Coef.</th>
<th>S.E.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.819</td>
<td>-0.121</td>
<td>-1.090</td>
<td>-0.819</td>
<td>0.121</td>
<td>0.441</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.114</td>
<td>0.101</td>
<td>1.436</td>
<td>-1.090</td>
<td>0.545</td>
<td>0.336</td>
</tr>
<tr>
<td>Multi-Family</td>
<td>1.587</td>
<td>1.362</td>
<td>-0.722</td>
<td>0.328</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>0.196</td>
<td>0.054</td>
<td>-2.781</td>
<td>0.297</td>
<td>0.185</td>
<td>1.340</td>
</tr>
<tr>
<td>Open Space</td>
<td>0.034</td>
<td>0.054</td>
<td>-2.747</td>
<td>-0.798</td>
<td>0.654</td>
<td>0.450</td>
</tr>
<tr>
<td>Pervious Surface</td>
<td>12.037</td>
<td>63.699</td>
<td>-0.040</td>
<td>0.003</td>
<td>0.961</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>0.107</td>
<td>0.042</td>
<td>1.763</td>
<td>0.491</td>
<td>5.828</td>
<td></td>
</tr>
</tbody>
</table>

Cox & Snell R²

- 0.138

* , ** , *** Correlations are significant at the 0.10, 0.05, and 0.01 levels, respectively (2-tailed)
Summary of Findings

• The relationship between EJ factors and Land-use analysis is not as transparent as anticipated.
 – Industrial land-use is not found to be significant.
 – Pervious surface and retail show consistent results among statistical models.
Conclusion & Discussion

• The contribution of the transportation factors to the EJ areas is identified, while that of the land use remains unanswered.

• Public transit, particularly bus, serves the EJ areas appropriately, but it may cause public health and safety concerns.

• The unclear relationship between land use and EJ may caused by the spatial segregation between residential land use and non-residential land use.

• Future studies should properly address issues with the unit of analysis (Census Tract)