Survey to Support 2D Hydraulic Aquatic Habitat Models

New Mexico Interstate Stream Commission (NMISC)
Presented at the 2015 Esri International User Conference
San Diego Convention Center
Wednesday, July 22

David Anderson
Senior Water Resource Specialist, NMISC

Randy Olden
GIS Manager, HDR
Gila River Fish Habitat Study - 2014

Objectives

• Determine potential change in fish habitat resulting from proposed AWSA¹ diversions in the Study Area
 - Existing agriculture diversions (earthen berms pushed up with a bulldozer)
 - Proposed AWSA diversion and storage
 - Release of “ecological” augmentation flows

1. Arizona Water Settlements Act
Focus Species

Native and Non-Native Federally Endangered Species

• Loach Minnow
 • (Tiaroga cobitis)

• Spikedace
 • (Meda fulgida)

• Native Species Assemblage
• Non-Native Species Assemblage
How to evaluate fish habitat?

Hydraulic Model!
- 1D and 2D models available
- Technology is making 2D models cost effective
- River2D Habitat Model
Study Design - Reach Designation

- Turkey Creek (2,600 ft long-1,200,000 sq ft)
- Mogollon Creek (650 ft long-140,000 sq ft)
- Fort West (1,500 ft long-400,000 sq ft)
- Gila Farms (800 ft long-115,000 sq ft)
Model Quality is Driven by Accurate Topography

Data collected in field using modern survey techniques
2D Model – Survey Technology

Robotic Total Station (RTS)

Real Time Kinematic (RTK) GPS

Aerial LiDAR

Terrestrial LiDAR (Laser Scanning)
Robotic Total Station (RTS)

• Survey Instrument That Can Track Survey Rod and Automatically Calculate Angles and Distances
• Collects XYZ Location As Fast As Field Staff Can Move The Sensor and Hold It Still Again
• Setup More Time Consuming Than RTK
• Requires Existing Control or Static Survey Grade GPS to Place in Geographic Coordinate System
• Accurate to 0.14 cm
Real Time Kinematic GPS (RTK)

- GPS Sensor Accepting Real Time Corrections From Static GPS Base Receiver
- Collects XYZ Location As Fast As Field Staff Can Move The Sensor and Hold It Still Again
- Minimal Processing
- Accurate From 1-5 cm or Less
Terrestrial LiDAR

- Survey Instrument That Can Collect Dense Point Clouds From Stationary Position
- Collects XYZ Locations and RGB Values for Each Return
- Does Not Penetrate Vegetation
- Requires Existing Control or Static Survey Grade GPS to Place in Geographic Coordinate System
- Highly Accurate, Very Dense
Aerial LiDAR

- Sensor Collects Point Cloud From Airplane or Helicopter
- Collects XYZ Locations Along Swath
- Penetrates Canopy
- Collects Large Area Topography and Canopy/Structure Data Quickly
- Accuracy Varies Depending On Sensor and Platform
Study Design - Reach Designation

<table>
<thead>
<tr>
<th>Reach</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey Creek</td>
<td>LiDAR, RTK, RTS</td>
</tr>
<tr>
<td>Mogollon Creek</td>
<td>LiDAR, RTK, RTS, Laser Scan</td>
</tr>
<tr>
<td>Fort West</td>
<td>RTK, RTS, Laser Scan</td>
</tr>
<tr>
<td>Gila Farms</td>
<td>RTK, RTS, Laser Scan</td>
</tr>
</tbody>
</table>
Laser Scan

Dense scan data reduced using open source software Cloud Compare

Exported to GIS feature class
RTK and RTS

- OPUS Correction for RTK
- Transformation to common survey points for RTS data
- Positions corrected using Trimble Business Center
- Points Exported to GIS feature class

Aerial LiDAR

- Reduced using ArcGIS terrain pyramids
- Points exported to GIS feature class
Point Data Processed and Merged

- Online Positioning User Service (OPUS) Correction for RTK
- Transformation to common survey points for RTS data
- Positions corrected using Trimble Business Center
- Points Exported to GIS
- QC completed in ArcScene
- Exported to River2D
Final Surfaces

- Exported to River2D compatible text file format using Python
- XYZ Point file
- Surface used as base for mesh development and hydraulic model
Habitat Modeling

River2D Spatial Output

Turkey Creek Study Site - Loach Minnow Adult – 65 cfs
Summary

- Objective – Evaluate fish habitat on Gila River
- 2D Model River2D requires dense, accurate topography
- Cost effective modern survey methods used to collect data
 - Merged LiDAR, RTK, RTS, and Laser Scan
- Final topographic data used develop robust and effective 2D fish habitat model
Questions?
Contact:
David Anderson
david.anderson@state.nm.us

Randy Olden
rolden@hdrinc.com