WHERE ARE THE TRUCKS?
USING GPS DATA TO DRIVE PORT DECISION-MAKING

Shane Pittman
Supervisor, Spatial Data
Port Metro Vancouver

Andrew Stanevicius
Area Manager, Assistant Vice President
TranSystems Corporation
AGENDA

- Introduction
- Project Background
- Drayage Model
- Analysis Tools
- In-Depth Example
- Conclusion
- Questions
 INTRODUCTION

• Who We Are: Port Metro Vancouver
 • Canada’s largest gateway, handling 19 percent of the value of Canada’s total trade in goods
 • Third largest tonnage port in North America
 • Most diversified port in North America
 • Business sectors include automobiles, breakbulk, bulk, container and cruise
 • Facilitates trade with more than 160 world economies
 • Handled 140 million tonnes of cargo in 2014
 • Responsible for more than 16,000 hectares of water, and more than 1,000 hectares of land and assets along ~350 kilometres of shoreline
INTRODUCTION

• Port Metro Vancouver Jurisdiction
INTRODUCTION

• **Who We Are: TranSystems Corporation**
 • Serving the transit industry since 1966
 • Nearly 1,000 professionals in 40 offices throughout the United States
 • Listed in Engineering News Record as the country’s 17th largest transportation firm and 10th largest bridge firm
 • Comprehensive experience with other port authorities, such as: Port of Long Beach, Port Everglades, Port of Tacoma
INTRODUCTION

• Who We Are: TranSystems Corporation
 • Dedicated Operations Planning and Analysis practice area
 • Utilizes simulation modeling and other analytical methods to evaluate transportation projects, facility improvement and goods movement strategies.
 • Specializes in integrating other technologies into our modeling including GIS, databases, ESRI Arc Map
 • Modeling approach allows us to analyze entire transportation systems
 • Not just as a standalone gate or traffic model
 • Where multiple modes and facilities can be integrated to test impacts of operating rules and policy
• Project = Smart Fleet program, a Port initiative
 • Started in 2013, with three goals:
 1) Improve efficiency & reliability of terminal operations
 2) Reduce greenhouse emissions from trucks
 3) Strengthen the Port’s competitive advantage
• Four phases of program (we will cover first two):
 1) GPS installation
 2) Drayage Model software implementation
 3) Truck Licensing System (TLS) reform
 4) Common reservation system implementation
PROJECT BACKGROUND

- Program timeline so far

EARLY 2012
- Container Drayage Efficiency Pilot Program
 - 300 trucks
 - 16% of fleet

EARLY 2013
- GPS Program Expansion Drayage Model Project
 - 1000 trucks
 - 50% of fleet

MID-2014
- GPS units installed on all container fleet
 - 2000 trucks
 - 100% of fleet
PROJECT BACKGROUND

• GPS installation
 • GPS points are recorded in response to certain events
 • Ignition On
 • Ignition Off
 • Start Moving
 • Stop Moving
 • Turn
 • Enter/Leave Geofence
 • Time (5-minute intervals)
PROJECT BACKGROUND

- Geofences are areas of significant container activity
- Terminals and offdock facilities shown below
• Significant GPS attributes collected:
 • Longitude
 • Latitude
 • Truck ID
 • Speed
 • Direction
 • Street Name
 • Address Number
 • Received On (Date/Time)
 • Trigger Event
• Drayage Model software
 • Decision-support tool with several different components
 • Reports truck movement and evaluates potential changes in regional transportation policies/regulations
 • Forecasts and analyzes potential impacts to stakeholders
 • Assessed the effectiveness of change through scenarios
 • Evaluates emissions, estimated costs, turn times, volumes, hours of operations, and effects on competitiveness
 • Benefits include more informed decision-making, increased predictability, and improved financial outcomes
PROJECT BACKGROUND

• TranSystems Corporation
 • Provided technical background required to utilize GPS, a renewable data source, to build a user-friendly analysis tool
 • Provides performance metrics
 • Allows visualization through ESRI ArcMAP
 • Built a regional drayage model
 • Combined GPS data, discrete event simulation, and data processing
 • Unique because the data is renewable on a monthly or more frequent basis allowing for continual and up-to-date scenario planning and monitoring
DRAYAGE MODEL
DRAYAGE MODEL

- Our GIS team focuses on processing and analyzing GPS data to report on truck movement

- Import process:
 1) Run GPS Data Processor
 - Set date parameters for data
 2) Launch ArcMAP
 - Open custom toolbox
 - Import GPS points
 - Connect points based on truck ID to create lines
 - Create trips that start and end in geofences
 - Calculate inputs for other Drayage Model components
• Process results in more than 200,000 monthly trips (20 million segments total, 15GB file geodatabase)
Each trip line includes:

- Truck ID
- Point Received On (Date/Time)
- X & Y Coordinates
- Origin Geofence
- Destination Geofence
- Trip ID
- Bearing

- Trip Type
- Traffic Analysis Zone
- Hour
- Truck Age
- Emission Bin
- Meters From Previous GPS Point
Once importing is complete, our GIS team uses several tools to analyze the trips:

- Seven tools total
- Three tools produce monthly reports
- Four tools are run upon request

Tools were built in two ways:
- ModelBuilder for model tools
- Python Programming Language for script tools
1. Isolate Truck Movement tool
 • Produces total trips for an individual truck
ANALYSIS TOOLS
ANALYSIS TOOLS

2. Isolate From-To Trips tool
 • Produces total trips for a specific origin/destination geofence combination
3. Isolate Individual Trip tool
 • Produces a specific trip by a single truck
4. Origin Destination Matrix Table tool

- Reports total number of trucks entering and leaving each geofence
5. Bridge Crossings Map tool

- Produces total number of trucks crossing each bridge for three specific time periods
ANALYSIS TOOLS
6. Hourly Truck Volumes by Direction tool
 • Shows total number of trucks intersecting a user-defined line, broken down by hour and direction
ANALYSIS TOOLS

7. Origin Destination Traffic Volume Maps tool
 • Shows routes taken to and from each of the geofences
 • Produces 50 maps total when run
IN-DEPTH EXAMPLE

• Now a behind-the-scenes look at the Origin Destination Traffic Volume Maps tool
• Good example of logic we use in doing these different kinds of analysis
• 5-step automated process for each geofence when user runs the tool
IN-DEPTH EXAMPLE

- Query trip lines
- Count trucks against road
- Calculate volume
- Change road colour and labels
- Export PDF map
IN-DEPTH EXAMPLE

- Query trip lines
- Count trucks against road
- Calculate volume
- Change symbology and labels
- Export PDF map
IN-DEPTH EXAMPLE

- Query trip lines
- Count trucks against road
- Calculate volume
- Change symbology and labels
- Export PDF map
IN-DEPTH EXAMPLE

- Query trip lines
- Count trucks against road
- Calculate volume
- Change symbology and labels
- Export PDF map
IN-DEPTH EXAMPLE

- Query trip lines
- Count trucks against road
- Calculate volume
- Change symbology and labels
- Export PDF map
• Large volume of data was a challenge
 • Initial pilot used MS Access
 • Due to increasing number of trucks using GPS, we quickly realized data was too large
 • Converted to SQL Server for data processing
 • Once entire fleet was equipped with GPS, ArcMAP had difficulty processing all the monthly GPS points
 • ArcMAP is 32-bit software
 • Converted all GPS import tools from Modelbuilder to Python
 • Ran successfully in 64-bit Background Geoprocessing environment
 • Long processing times also a trade-off
CONCLUSION

• Next steps:
 • Regional transportation planning
 • Make compatible with Translink Traffic Analysis Zones
 • Environmental considerations
 • Calculate emissions based on truck age, speed, and distance
 • Use calculations to create maps of total volumes
 • Real-time GPS feed for terminals
 • Monitor traffic on-site
 • Track how long a truck is on the terminal
 • Help terminals avoid paying wait time fees
QUESTIONS?

Shane Pittman
shane.pittman@portmetrovancouver.com

Andrew Stanevicius
arstanevicius@transystems.com