Freeport-McMoRan Sensor Data and GIS Approach for Visualization
July 23, 2015
Sensor Data

- Sensor Data plays an important role in exposing the problems in the mine cycle
- Sensors help determine severity of issue and thus prioritize the need for attention
- Data for various sensors are available for example:
 - Tire Pressure, Suspension Cylinder, Fuel Level, Flow Meters, Payload Status, Weather Stations, Ground Speed, Engine Load, Avg. Flow etc.

This presentation covers how Freeport-McMoRan is using GIS to visualize the suspension sensor data and then making the application available to site users for daily implementation and follow up.
Project Goals

- **Objective:** Use of Sensor and GPS data to measure road quality and identify adverse conditions for roads.

- **Approach:**
 - Conduct onsite field observations to locate bad road conditions and observe truck behavior at those locations.
 - Analyze sensor data to identify key indicators of road condition using:
 - Suspension cylinder pressure
 - GPS
 - Visualize findings using geospatial technologies.
We used field observations to identify bad points in the road

Process

- Traveled to mines to take field observations
- Observed trucks hitting rough sections of road and logged data (see example)
- Used Garmin GPS to pinpoint location of observed road conditions

Example:

- **Big Hole**
 - Lat: 32.7933
 - Long: -108.0835
 - Time: 12:54
 - Truck: 713
Road Quality – Sensor Observations

Trucks and Sensors → Feed → GPS and Sensor Data

Analyze Road Conditions
GIS Methodology and Automation

Haul Truck Suspension Analytics

- Python Script
 - ODBC Connection
 - Hive Table
 - Data/Records
 - Exists
 - Yes
 - No
 - Web Application (Data as per previous last update)
 - File Geodatabase
 - SDE
 - Updates Daily Table
 - Appends History Table (Time Series)
 - Web Application
- Haul truck routes with Road Observations Heat Map™

Key
- Field Observation
- ‘Good’ Strut Pressure
- ‘Bad’ Strut Pressure
Road Quality Deployment Across Portfolio
Road Quality Summary

- Objective
 - Used sensor and GPS data to measure road quality and identify adverse road conditions

- Operationalize
 - Using ArcGIS platform, create road quality heat-map
 - Create daily refresh of report

- Opportunities
 - Engage site operations to integrate into processes
 - Capture opportunity – differences in speed between when segment is ‘good’ vs ‘bad’
 - Build geospatial visualization that prioritizes bad segments based on impact-to-efficiency
 - Create road health scorecard
Road Quality & GIS Wrap Up

- Thank You
- Questions and comments most welcome...