What else can I get from my LiDAR?
A Tool to Evaluate Access Roads

Joshua McCurry
Alabama Power Company
Transmission Line Services Support
Challenges

Manual process of creating profile/cross-section drawings

Engineer flexibility to design roads

Looking for more uses for an expensive LiDAR product
Specify TIN Configuration

- Use An Existing Tin
- Import An XYZ File From PLS-CADD

Next
Create TIN

TIN Creation Process

XYZ File: \plscadd.xyz...
Output(Dir): \ALXAPFS01\JMCCURRY$...
Projection: NAD83 StatePlane Alabama East

Creating Feature Class...
Access Road Profile

Profile #1.0 (3.58%) [50:1.8]
Profile #1.1 (19.84%) [50:5.9]
Profile #1.2 (11.66%) [50:5.8]
Profile #1.3 (2.75%) [50:1.4]
Profile #1.4 (13.42%) [50:6.7]
Profile #1.5 (19.11%) [50:9.6]
Profile #1.6 (9.97%) [50:5]
Profile #1.7 (10.69%) [50:5.3]
Profile #1.8 (0.56%) [50:0.3]
Profile #1.9 (8.21%) [50:4.1]
Profile #1.10 (12.83%) [50:6.4]
Profile #1.11 (15.8%) [50:7.9]
Profile #1.12 (5.69%) [50:2.8]
Profile #1.13 (12.37%) [50:6.2]
Profile #1.14 (7.54%) [50:3.8]
Profile #1.15 (1.36%) [50:0.7]

Access Road Profile (Total Slope: 1.84%, Max Slope: 50:11.6)
Future Enhancements

More options for TIN inputs, e.g., LAS or DEM

Ability to mesh input datasets (NED, LiDAR, and Ground Survey)

Process time (for larger datasets)
Questions?