DOD Airfield Obstruction Collection and Mapping: A GIS Approach

Yaneev Golombek, GISP
Tom Cirillo

GEOSPATIAL SOLUTIONS

July 23, 2015
Purpose

- Conduct airfield obstruction survey for 5 installations in the CONUS (between 10/1/2013 and 9/30/2014).
- Update E-Tab mapping products.
- Collect high resolution (helicopter based) LiDAR for each installation to:
 - Assist with Airfield Obstruction Surveys.
 - Generate high resolution topographic products (DTM, DEM, DSM, 1ft contours) for each installation.
- Collect high resolution Orthophotography for each installation.
- Generate a comprehensive tree management plan.
Imagery / Lidar

- Orthoimagery – 3” pixel resolution inner area and 6” outer area. Both areas Mosaic together.

- LiDAR
 - Nominal Point Spacing of about 25 points per square meter.
 - RMSE(z) .03m
 - NSSDA achievable contour of .1m
 - ASPRS Class 1 achievable contour 0.09m
Wire Detection Test Site – Air Photo
Wire Detection Test Site Results – (First of Many)

- Points displayed by first return but not singles (first of many), colored by elevation
- Single flightline displayed (line #3)
- All test lines were successfully detected
Wire Detection Test Site Results - Lines Labeled

- Points displayed by first return but not singles (first of many), colored by elevation
- Single flightline displayed (line #3)
- All test lines were successfully detected
Airfield Obstruction Mapping

- Identify objects that are obstructions that can potentially pose hazards to aircraft, aircrews, and ground personnel.
- Follow regulations stated specifically in UFC 3-260-01
- Construct spatial 3D imaginary surfaces that follow the criteria of
 - Class B Army Runway Airspace Imaginary Surfaces.
 - Class B Air Force and Navy Runway Airspace Imaginary Surfaces.

A – Primary Surface (304M (1,000 USFT Wide)
B – Clear Zone Surface (Not Shown)
C – Approach Departure Clearance Surface (Sloped)
D – Approach-Departure Clearance Surface (Horizontal)
E – Inner Horizontal Surface (45.72M (150 USFT Elevation)
F – Conical Surface (20H:1V)
G – Outer Horizontal Surface (152.4M (500 USFT Elevation)
H - Transitional Surface (7H:1V)
I – Not used
J – Accidental Potential Zone (APZ) Not Shown
Obstruction Mapping

Classifications of Obstructions

- **Waiver** – (permanent, temporary or construction) – An obstruction manmade or naturally occurring that violates airspace per UFC 3-260-01, that cannot be reasonably corrected (permanent), or is expected to be corrected within 5 years (temporary). Requests for waivers must present compelling justification to violate criteria and clearly demonstrate no viable, practical alternative that meets criteria exists.

- **Permissible Deviations** - An obstruction violating the airfield surfaces but is required in support of airfield operations. These objects/facilities must be built in accordance with criteria in order to be considered Permissible.
Obstruction Mapping

- **Exemption** - An obstruction (facility or other item) constructed/sited under a previous, typically less stringent siting standard. No waiver is required. Facilities or other items constructed/sited under current standards that are behind and beneath a MAJCOM-approved Building Restriction Line (BRL) are considered exemptions and therefore do not require a waiver.

- **BRL Exempt** – An obstruction that violates UFC 3-260-01 criteria but resides behind and beneath a MAJCOM-Approved ‘Building Restriction Line’ (BRL). No waiver is required.
Airspace Surface rendered in 3-D (vertically exaggerated)
Airspace Surface rendered in 3-D (vertically exaggerated)
Airspace Surface rendered in 3-D w/ Light Detection and Ranging (LiDAR) point cloud
Approach-Departure Clearance Surface (C) w/ obstructions identified using LiDAR

Features in violation of the 50:1 Slope Approach-Departure Surface
Approach-Departure Clearance Surface (C) w/ obstructions identified using LiDAR

Features in violation of the 50:1 Slope Approach-Departure Surface

Obstructions above Airspace Imaginary Surface (C)

Above ground features, non-violation.

Airspace Imaginary Surface (C)

Ground
Approach-Departure Clearance Surface (C) w/ obstructions identified using LiDAR (cont)
Relevant E-Tab Maps

- E-1 - On-Installation Obstructions to Airfield Criteria. Specifically primary surfaces and a specified clear zone.
- E-2 - Approach/Departure Zone Obstructions beginning at the end of the Primary Surface extending outward 10,000 ft.
- E-3 - Approach/Departure Zone Obstructions from 10,000 ft to 10 miles (more for natural terrain hazards such as hills).
- E-4 - Shows off-installation obstructions to air navigation (natural and man-made) within a ten (10) mile radius extending outward from each runway.
- E-5 - Terminal Enroute Procedures (TERPS) Automation Plan (highest feature in master obstacle chart).
- E-6 - Airfield and Airspace Clearances.
- E-9 - Aircraft Parking Plan.
- E-10 – Airfield Lighting System.
All Obstructions Located within the Installation Boundaries.
E-1 - On-Installation Obstructions to Airfield Criteria
E-2 - Approach/Departure Zone
Obstructions to 10,000 ft
E-3 - Approach/Departure Zone
Obstructions from 10,000 ft to 10 miles
E-4 - Obstructions to Air Navigation within Airspace Control Surfaces
E-5 Identifies highest feature is Master Obstacle Chart. Grid “Wagon Wheel” splays radiates from airport reference point and lists max z.
E-9 - Aircraft Parking Plan.

E-10 – Airfield Lighting System.
Conclusions

- Lidar and Othropotography are instrumental for E-Tab series obstruction mapping.
- Lidar and Othropotography assist with both the pre-survey planning for obstruction mapping and post-survey verification.
- Spatial Analyst and Lidar analysis software are instrumental for detecting which features break the 3D imaginary surface plane.
- Utilizing high resolution Lidar and Orhtopotography (complimented with the field survey) assist with classifying obstructions as waivers, permissible deviations or exemptions.
- Mobile scanning is a viable alternative for primary surface (E1) obstruction collection.
Conclusions (Collection Methods)

Fixed-Wing

Helicopter

Stationary

Surface - Mobile
THANK YOU

Yaneev Golombek, GISP
Merrick and Company
Yaneev.Golombek@merrick.com
PhD Student
University of Colorado

Tom Cirillo
HB&A
Tom.Cirillo@hbaa.com

MERRICK & COMPANY

HB&A