ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop

Emily Apsey – Performance Engineer
Presentation Overview

• What it takes to successfully virtualize ArcGIS Pro in Citrix XenApp and XenDesktop
 - Shareable GPU, hardware and software configuration and areas of optimization
• Esri Performance Testing initiatives
 - Performance and VM/GPU density
What and Why?

- **ArcGIS Pro**
 - New rendering engine
 - DirectX11 and OpenGL
 - Virtualizes differently than ArcMap
 - Based on GDI+
 - Heavily used in Citrix XenApp
 - Must virtualize well
 - Provide great UX
ArcGIS Pro Add-In

- Specifically designed for performance
- Scriptable and reproducible
- Self contained
- Packaging data and test package to business partners
- Great for Demos!
Testing Goals

• Show if a shareable GPU is needed (ArcMap + Pro)
 - ArcMap – single threaded, GDI+ rendering
 - Pro – multi threaded, DX or OpenGL rendering

• GPU needed for both 2D and 3D workflows?
 - How to monitor and communicate performance/ scalability

• Optimal VM configurations
 - vCPU, Memory, GPU Profile for optimal user experience
 - What and how to communicate information to users, IT administrators
 - How many VMs can a single GRID card accommodate?

• Administration
 - Know a little before you go on-site or create a demo of ArcGIS Desktop in virtualized environments
Configuration of Virtualization Hosts

- Adequate processors and shareable GPUs on the host
- Physical processors with enough cores to support VMs for modern multithreaded applications
 - Two Intel E5-2695 V2 processors. Each processor has 12 cores
- GPUs designed for virtualized environments such as those on the Nvidia GRID K2 cards

- Esri Performance Engineering Lab:
 - Dell R720 with 2 Intel Xeon E5-2695 V2@ 2.40GHz processors, 200Gb memory, 4TB storage, two Nvidia GRID K2 cards.

ArcGIS Pro uses both CPU and GPU

- GPU aids rendering performance by relieving CPU resources

![CPU Utilization graph](image1)

![GPU Utilization graph](image2)

*Scalability testing graphs using vGPU.

- If no GPU is present, all rendering commands are processed on CPU.

Virtualizing in Citrix XenApp & XenDesktop
Citrix Virtualization Solutions

• 7.x
 - Merged XenApp and XenDesktop technologies
 - Primarily uses MCS; can optionally use PVS or use pre-created VM’s
 - Machine Catalogs
 - Ability to create multiple VM’s based on Template
 - Delivery Groups
 - Defines Application or Desktop publication
 - Assigns users to VM’s

• Historically been separate products
 - Gives administrators the ability to admin both XA/XD via Citrix Studio
 - Licensing is still separate

 - http://support.citrix.com/content/dam/supportWS/kA560000000TNDvCAO/XD_XA7.x_LicensingFAQ.pdf
VM Configuration - GPU

- VM’s can be configured to use GPU two ways:
 - Shareable (vGPU)
 - Many profiles to choose from
 - Passthrough (Dedicated)

- XenDesktop
 - Can be configured either Shareable or Passthrough

- XenApp
 - Passthrough (OS handles time slicing GPU across multiple terminal sessions)
 - Shareable is not officially supported by Citrix
Nvidia GRID K1 vs. K2 cards

• **K1**
 - GPU’s are equivalent to Quadro K600
 - Entry Level GPU’s
 - 4 K600 GPUs on board and 4GB memory per GPU

• **K2**
 - GPU’s are equivalent to Quadro K5000
 - High-end analyst who currently uses workstation w/ GPU
 - 2 K5000 GPUs on the board and 4GB memory per GPU

K2 scales better than K1

 Big difference is # of CUDA-cores on each GPU to process rendering task

 K1 (K600) has 192 per GPU
 K2 (K5000) has 1536 per GPU

Virtualizing in Citrix XenApp & XenDesktop
vGPU Technology

• Pass-through
 - Graphics commands of each virtual machine passed directly to the GPU
 - No translation by the hypervisor

• vGPU Manager (Hypervisor)
 - Assign the optimal amount of graphics memory to VM
 - Every virtual desktop has dedicated graphics memory
 - NVIDIA GRID K2 card (recommended): 2 GPUs, allowing 16 users to share a single card.
 - Controlled by vGPU Profile assigned to VM

• vGPU Profiles (used by VM’s)
 - Citrix XenDesktop
 - VMWare Horizon View

- See more at: http://www.nvidia.com/object/virtual-gpus.html#sthash.WN5id3FZ.dpuf
GRID vGPU Profiles

- Nvidia K2 Card: 2GPU’s (each GPU has 4GB of Memory)
Nvidia GRID vGPU Architecture

1. Install vGPU Manager

2. Configure VM to use vGPU

3. Install GRID vGPU drivers in VM
Step 1: vGPU Manager

- The NVIDIA GRID vGPU software package for Citrix XenServer

- Pre-requisites:
 - Citrix XenServer 6.2 SP1 with applicable hotfixes or later.
 - Citrix XenDesktop 7.1 or later

- NVIDIA Virtual GPU Manager runs in XenServer’s dom0.
 - Provided as an RPM
 - Copy to XenServer’s dom0 and then installed.

- Reboot Server

- Verify Installation
 - `lsmod | grep nvidia`
 - `nvidia-smi`
Step 2: VM Configuration (workflow for XD and XA)

1. Create VM
 - Assign Resources; CPU, Memory

2. Install OS
 - Install XenTools, Join Domain, Install VDA (Virtual Delivery Agent)

3. Install ArcGIS Pro

4. Create MCS Catalog
 - Hosting Connection / Resources must match currently installed vGPU/Passthrough GPU in the Template you are using.

5. Create delivery Group.

6. Shutdown VM, Assign GPU resources.
 - Virtual GPUs resident on a single physical GPU must be all of the same type

7. Power On VM, install Nvidia Driver
Step 2: VM Configuration (continued)

8. Verify GPU
 - Windows device manager:
 - Nvidia Control Panel
 - Right click on desktop.
 - Run Nvidia-smi on host
 - GPU Utilization is outputted.
 - Can also output log.
XenDesktop
Test Results
Virtualizing in Citrix XenApp & XenDesktop

3D Scalability Testing (240Q)
Host Avg CPU % Utilization

16VMS AVG CPU UTIL 75%
3D: Avg Draw Time and Min FPS

- **SumAvg**:
 - 1VM: 80 seconds
 - 4VM: 80 seconds
 - 8VM: 80 seconds
 - 12VM: 80 seconds
 - 16VM: 123 seconds

- **FPSMin**:
 - 1VM: 15 frames per second
 - 4VM: 15 frames per second
 - 8VM: 15 frames per second
 - 12VM: 15 frames per second
 - 16VM: 10 frames per second
Virtualizing in Citrix XenApp & XenDesktop

2D Scalability Testing (240Q)
Host Avg GPU % Utilization

- 4VMs:AvgGPU%Util
- 8VMs:AvgGPU%Util
- 12VMs:AvgGPU%Util
- 16VMs:AvgGPU%Util

16 VMS
AVG GPU
UTIL
28%
XenApp

Test Results
Nvidia GRID GPU Pass-Through Architecture

- Dedicates a GPU to a virtual machine
 - Full 4GB of GPU Memory (frame buffer)
- Recommended for Citrix XenApp
 - Currently not suitable for ArcGIS Pro
 - Heavily utilizes GPU Memory
 - OS does not split load evenly across multiple concurrent sessions
 - 1st one in takes as much as it needs
 - Not given back until session ends
ArcGIS Pro – XenApp 7.6

Requires GPU Pass-Through
- K2 GPU Memory = 4GB

OS does not do well splitting GPU resources across different terminal sessions

XenDesktop recommended
- Dedicated resources
- vGPU profile manages FB
- Dictates VM density

Esri collaborating with Nvidia and Citrix
VM Configuration Recommendations
Test Results: vCPU Recommendation

- Multiple threaded nature of ArcGIS Pro
 - Direct correlation between vCPU and amount of threads
 - Analysis of Total Task Time and Hung Time

- 6vCPU for most 3D and 2D data and workflows
- 4vCPU may be suitable for simple 2D data and workflows
Test Results: vGPU Recommendation

- **K280Q (4GB of FB, i.e. GPU Memory)**
 - Highest performing, lowest density
 - Lacked scalability, only 4VM’s on two K2 cards
 - Each gets an entire GPU

- **K260Q (2GB of FB)**
 - Great performance and UX experience, higher density
 - Scalability = 8VM’s; CPU/GPU Host Utilization had room for growth
 - Test results were within acceptable threshold

- **K240Q (1GB of FB)**
 - Good performance and UX experience.
 - Scalability = 16 VM’s

- **K220Q (512MB of FB)**
 - Least performing, highest density
 - 3D UX poor/performance slow; too little virtual RAM (VRAM).
 - May be suitable for simple 2D data and workflows

Recommended Profile

Virtualizing in Citrix XenApp & XenDesktop
Answers obtained from testing

- **ArcMap**
 - Rendering engine does not utilize GPU
 - GPU is not heavily utilized
 - Only when user explicitly executes hardware acceleration operations
Future testing

• Mixed workflows
 - Initial testing focused on rendering pipeline
 - Add analytical operations (CPU intensive)
 - How GPU Utilization and density is affected when users are simultaneously running a CPU intensive geoprocessing task?

• Mixed Virtualization Vendor Solutions
 - VMWare ESXi XenDesktop

• Storage – SAN
 - More realistic – large infrastructure don’t use SSDs

• Cloud based VDI (DaaS)
 - Increasing questions and interest
 - Distributors – Europe, NZ, US
Questions?

- Visit us at the Expo Hall
 - Desktop Island
 - ArcGIS Pro: virtualizing in VMWare Horizon View and Microsoft Hyper-V (Room 02)
 - Noon Tomorrow
 - eapsey@esri.com
Understanding our world.