Real-Time GIS: Best Practices

RJ Sunderman
Product Engineer
GeoEvent Extension
rjsunderman@esri.com

C. Adam Mollenkopf
Real-Time GIS
Capability Lead
amollenkopf@esri.com
@amollenkopf
What are we going to discuss?

Best Practices on

- Input and Output Connector usage
- Where, when, and why GeoEvent Definitions are created
- Feature Services and Stream Services workflows
- Performance
- High Availability & Scalability
Real-Time GIS
Integration and exploitation of streaming data

- Integrates real-time streaming data into ArcGIS
- Performs continuous processing and real-time analytics
- Sends updates and alerts to those who need it where they need it
Best Practice:
How do I get my real-time data into ArcGIS?
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector

You can create your own connectors.

GeoEvent Extension

GeoEvent Services

Out of the Box

Poll an ArcGIS Server for Features
Poll an external website for GeoJSON, JSON, or XML
Receive Features, GeoJSON, JSON, or XML on a REST endpoint
Receive GeoJSON or JSON on a WebSocket
Receive RSS
Receive Text from a TCP or UDP Socket
Watch a Folder for new CSV, GeoJSON, or JSON Files

Esri Gallery

ActiveMQ
CAP
CoT
Cursor-on-Target
Exploitation Support Data
Instagram
KML
Kafka
MQTT
NMEA 0183
RabbitMQ
Sierra Wireless (RAP)
Trimble (TAIP)
Twitter

Partner Gallery

CompassCom
CompassLDE
enviroCar
exactEarth AIS
esd
FAA (ASDI)
GNIP
GNIP
Networkfleet
OSIsoft
Valarm
Zonar
Zonar
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector

Input Connector = Adapter + Transport

GeoEvent Extension

Connectors

<table>
<thead>
<tr>
<th>Connectors</th>
<th>Transport</th>
<th>Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSocket</td>
<td>WebSocket</td>
<td>JSON</td>
</tr>
<tr>
<td>HTTP+REST</td>
<td>HTTP</td>
<td>GeoJSON</td>
</tr>
</tbody>
</table>

Transports

- Feature Service
- File
 - HTTP
 - HTTP+BasicAuth
 - HTTP+OAuth
- TCP
- UDP
- WebSocket

Adapters

- Feature-JSON
 - GeoJSON
 - JSON
 - RSS
 - Text
 - XML

Esri Gallery

- ActiveMQ
- IRC
- Kafka
- MQTT
- RabbitMQ
- Twitter
- CAP
- Cursor-on-Target
- GeoMessage
- Instagram
- NMEA
- Sierra Wireless (RAP)
- Trimble (TAIP)
- Twitter
- VMF
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector

You can copy any of the out-of-the-box connectors and tailor their properties.
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector.
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector.
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector

Configure a new connector using an out-of-the-box adapter / transport
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector

- http://links.esri.com/geoevent-gallery
How do I get my real-time data into ArcGIS?

Easily integrate real-time streaming data into ArcGIS using an Input Connector

- Use an existing inbound connector available out-of-the-box
- Copy and customize an out-of-the-box connector to meet your needs
- Configure a new connector using available adapters and/or transports
- Download connectors, adapters, and/or transports from Esri Galleries and GitHub repositories
 - Source code is available from GitHub for customization or to use as a reference
- Develop your own adapter / transport using the GeoEvent SDK
 - The SDK and a Developer’s Guide are included in the GeoEvent extension product’s installation folder
Best Practice:
How do I update & alert those who need it where they need it?
How do I update and alert those who need it where they need it?

Easily disseminate notifications, alerts, and updates using an Output Connector.

You can create your own connectors.

Out of the Box:
- Add or Update a feature
- Publish Text to a UDP Socket
- Push GeoJSON or JSON to an external Website
- Push GeoJSON or JSON to an external WebSocket
- Push Text to an external TCP Socket
- Send a Text Message
- Send an Email
- Send an Instant Message
- Send Features to a Stream Service
- Write to a CSV, GeoJSON, or JSON File

Esri Gallery:
- ActiveMQ
- Cursor-on-Target
- Hadoop
- Kafka
- MongoDB
- MQTT
- RabbitMQ
- Twitter

Partner:
- CESIUM
How do I update and alert those who need it where they need it?

Output Connector = Adapter + Transport

GeoEvent Extension

Connectors

- Send an Email
- Send Features to a Stream Service

Adapters

- Cache
- Feature-JSON
- GeoJSON
- JSON
- Message Formatter
- RSS
- Text
- WebSocket

Transports

- File
- HTTP
- HTTP+BasicAuth
- HTTP+OAuth
- SMTP
- Stream Service
- TCP
- TCP+BasicAuth
- TCP+OAuth
- UDP
- WebSocket
- XMPP

Other Services

- ActiveMQ
- Hadoop
- IRC
- Kafka
- MongoDB
- MQTT
- RabbitMQ
- TCP-Squirt
- Twitter

Partners

- Esri Gallery
- CESIUM
Best Practice:
When and why are GeoEvent Definitions created?
When and why are GeoEvent Definitions created?

Authoring GeoEvent Definitions – Importing from a feature service

- Connect an **output** to your feature
- Import the schema of your feature as a **GeoEvent Definition**
- Configure an **input** to receive real-time data
- Author and publish a **GeoEvent Service**
- Visualize your real-time feature
When and why are GeoEvent Definitions created?

Authoring GeoEvent Definitions – Creating using GeoEvent Manager

You own GeoEvent Definitions you either import or create manually using the GeoEvent Manager.
When and why are GeoEvent Definitions created?

Auto-generated GeoEvent Definitions – Created by an inbound connector

- The adapter will make a best-guess based on data discovered in the first event received.
- You can copy and tailor auto-generated GeoEvent Definitions to meet your needs.
 - But you should not edit an event definition owned or created by an adapter.
When and why are GeoEvent Definitions created?

Managed GeoEvent Definitions – Created by a processor from within a GeoEvent Service

- A managed GeoEvent Definition is created when a processor adds or removes a field from a GeoEvent
 - Field Calculator
 - Geotagger
 - Field Enricher
 - Buffer Creator
 (etc…)

- Publishing changes to a GeoEvent Service signals the owning processor to delete its managed GeoEvent Definition

- This can present you with issues you need to work around…
 - Field Mapping
 - Stream Services
 - Custom Processors

Be aware of the GeoEvent Definition associated with your GeoEvent(s) at every stage of your event processing

For more information see ‘Understanding GeoEvent Definitions’ blog:
http://tinyurl.com/o83wjcv
Best Practice:
When should I use a Feature Service vs. a Stream Service?
When should I use Feature Services vs. Stream Services?

Two patterns

- **Feature layers pull from feature services**
 - Web apps poll to get periodic updates
 - Must be backed by an enterprise geodatabase (EGDB)

- **Stream layers subscribe to stream services**
 - Web apps subscribe to immediately receive data
 - Low latency and high throughput
What is the recommended workflow for working with Feature Services?

Feature Service workflow

- Connect an **output** to your feature
- Import the schema of your feature as a **GeoEvent Definition**
- Configure an **input** to receive real-time data
- Author and publish a **GeoEvent Service**
- Visualize your real-time feature
What is the recommended workflow for working with Stream Services?

Stream Service workflow

- Configure an input to receive real-time data
- Define a GeoEvent Definition
- When creating an output publish a Stream Service and connect the output to it
- Author and publish a GeoEvent Service
- Visualize your real-time stream service
 - Use an ArcGIS Online WebMap
 - Use a custom JavaScript web app
How do I measure Performance?

Test Harness Orchestrator runs a series of fixtures that specify:
- the GeoEvent host(s) and input/output TCP ports
- timed tests with a rate and a stagger distribution
- 100 events per second for 60 seconds with
- and where to record the results, a.k.a. report.

https://github.com/Esri/performance-test-harness-for-geoevent
Throughput Performance Benchmark @ 10.3
Two times more throughput than 10.2.2

Throughput = Processed # Events per Second
Velocity = # of produced Events per Second

As captured on primary benchmarking machine using ArcGIS 10.3
Geofencing Performance Benchmark @ 10.3

US States benchmark – 51 geofences with 1,617 vertices on average (78 min / 21,970 max)
Geofencing Performance Benchmark @ 10.3
US Congressional Districts benchmark – 436 geofences with 512 vertices on average (24 min / 7,285 max)
Geofencing Performance Benchmark @ 10.3

US Counties benchmark = 3,143 geofences with 166 vertices on average (9 min / 838 max)
Geofencing Performance Benchmark @ 10.3

US States benchmark

US States
51 Geofences
1,617 vertices on average (78 min and 21,970 max)

As captured on primary benchmarking machine using ArcGIS 10.3

<table>
<thead>
<tr>
<th>Operator</th>
<th>10.3 events per second</th>
<th>10.2.2 events per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disjoint Any</td>
<td>2,499</td>
<td></td>
</tr>
<tr>
<td>Inside Any</td>
<td>2,488</td>
<td>150</td>
</tr>
<tr>
<td>Intersect Any</td>
<td>2,486</td>
<td></td>
</tr>
<tr>
<td>Within Any</td>
<td>2,482</td>
<td></td>
</tr>
<tr>
<td>Touches Any</td>
<td>2,248</td>
<td></td>
</tr>
<tr>
<td>Outside Any</td>
<td>2,245</td>
<td></td>
</tr>
</tbody>
</table>

16 times faster than 10.2.2
Geofencing Performance Benchmark @ 10.3
US Congressional Districts benchmark

US Congressional Districts
436 Geofences
512 vertices on average (24 min and 7,285 max)

<table>
<thead>
<tr>
<th>Operator</th>
<th>10.3 events per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disjoint Any</td>
<td>2,249</td>
</tr>
<tr>
<td>Outside Any</td>
<td>2,248</td>
</tr>
<tr>
<td>Intersect Any</td>
<td>2,248</td>
</tr>
<tr>
<td>Touches Any</td>
<td>2,244</td>
</tr>
<tr>
<td>Within Any</td>
<td>2,244</td>
</tr>
<tr>
<td>Inside Any</td>
<td>2,244</td>
</tr>
</tbody>
</table>

As captured on primary benchmarking machine using ArcGIS 10.3
note: this scenario was not benchmarked at 10.2.2
Geofencing Performance Benchmark @ 10.3

US Counties benchmark

Operator

<table>
<thead>
<tr>
<th>Operator</th>
<th>10.3 events per second</th>
<th>10.2.2 events per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disjoint Any</td>
<td>1,997</td>
<td></td>
</tr>
<tr>
<td>Intersect Any</td>
<td>1,996</td>
<td></td>
</tr>
<tr>
<td>Outside Any</td>
<td>1,992</td>
<td></td>
</tr>
<tr>
<td>Touches Any</td>
<td>1,747</td>
<td></td>
</tr>
<tr>
<td>Inside Any</td>
<td>1,742</td>
<td>130</td>
</tr>
<tr>
<td>Within Any</td>
<td>1,740</td>
<td></td>
</tr>
</tbody>
</table>

Performance Comparison

17 times faster than 10.2.2

As captured on primary benchmarking machine using ArcGIS 10.3
What are the primary factors I should consider for Performance?

Operating environment, Network, RAM, and Processors

- **Operating environment:**
 - *Bare Metal = Windows 7 (64 bit) Enterprise*
 - Virtual Machines – beware! resources need to be shared in an effective way, like EC2.
 - Bare-Metal machines – dedicated resources are much more deterministic.

- **Network**
 - Speed (Mbps) – the faster the better.
 - *1 Gbps*

- **RAM**
 - size (GB) – 8GB is required at 10.3.
 - *16GB, defaulted JVM max heap size of 4GB used*
 - type – minimum of DDR3 is recommended.
 - *DDR3*
 - clock speed (MHz) and transfer rate (Mbps) – the faster the better.

- **Processors**
 - speed (GHz) – the faster the better.
 - *3.70GHz, Intel Xeon E5-1620 v2*
 - # of cores – the more the better.
 - *4 physical 8 Virtual*
High Availability & Scalability

Clustering

- Clusters administered via ArcGIS Server Manager
 - Site, Cluster(s), Machines

- Machines in a cluster share configuration
 - automatic provisioning upon joining a cluster
 - including custom components

- High Availability is achievable out-of-the-box

- Scale-out by adding machines to a cluster
High Availability
Site, cluster(s), and machines
High Availability

Distributed configuration store
High Availability

Distributed configuration store
Scalability

Output transports
Scalability

Input transports
Scalability

Input transports that are automatically load balanced
Scalability

Inputs transports that require you to bring your own load balancer
Scalability

cluster-simulator-for-geoevent

https://github.com/Esri/cluster-simulator-for-geoevent
Scalability
Inputs and distributed stream processing
High Availability
Inputs and distributed stream processing
High Availability
Inputs and distributed stream processing
Scalability

Pinned inputs and distributed stream processing
High Availability

Pinned inputs and distributed stream processing
High Availability
Pinned inputs and distributed stream processing
How do I measure Cluster Performance?
Scalability

Clustering for increased throughput

- Clusters administered via ArcGIS Server Manager
 - Site, Cluster(s), Machines
- Scale-out by adding machines to a cluster

As captured on 10.3 benchmarking cluster using ArcGIS 10.3
Stream Services:
High Availability & Scalability
Scalability

Scaling out Stream Services to support an increased # of concurrent users
High Availability
Stream Services concurrent user failover
High Availability
Stream Services concurrent user failover
High Availability
Stream Services concurrent user failover
Scalability
Scaling out Stream Services to support an increased # of concurrent users with a reverse proxy
High Availability
Stream Services concurrent user failover with a reverse proxy
High Availability
Stream Services concurrent user failover with a reverse proxy
GeoEvent Extension: Best Practices

Summary

• ArcGIS is a dynamic platform that enables continuous analytics and real-time visualization for better understanding of our world.

• The ArcGIS GeoEvent Extension for Server allows you to:
 - know what is happening, as it happens
 - react and make smarter decisions faster
 - be notified when interesting events occur
Other Real-Time GIS Sessions

- **Real-Time GIS: GeoEvent Extension**
 - Tue 10:15-11:30am, Room 17 A
 - Wed 10:15-11:30am, Room 14 B

- **Real-Time GIS: Leveraging Stream Services**
 - Tue 8:30-9:45am, Room 01 A/B
 - Wed 8:30-9:45am, Ballroom 06 D

- **Real-Time GIS: Applying Real-Time Analytics**
 - Tue 10:15-11:30am, Room 15 B
 - Wed 8:30-9:45am, Room 14 B

- **Real-Time GIS Use Cases and Implementation Patterns**
 - Tue 2:30-3:15PM, Demo Theater 6 - Geodata

- **ArcGIS Intelligence: Discern Activities of Interest through Advanced Analytics**
 - Wed 10:15-11:30am, Omni Ballroom A/B

- **Real-Time GIS: The Road Ahead**
 - Wed 1:30-2:45pm, Room 14 B

- **Real-Time GIS: Best Practices**
 - Thu 8:30-9:45am, Room 14 B

- **Real-Time GIS for Asset Readiness, Event Preparation, and Intervention**
 - Thu 8:30-9:45am, Room 29 C
Thank you…

- Please fill out the session survey in your mobile app
- Select session in the Mobile App
 - Use the Search Feature to quickly find this title
- Click “Technical Workshop Survey”
- Answer a few short questions and enter any comments