Best Practices for Managing Aerial and UAS Frame Imagery

Cody Benkelman, Jie Zhang
Objectives

- Manage and share collections of imagery from aerial frame cameras
 - Professional digital cameras
 - Metric lens, precise positioning with GPS & IMU
 - Uncalibrated frame cameras on unmanned aerial systems (UAS) or drones
 - Intent is to manage & process single, unprocessed images from the sensor; Preprocessed Orthophotos from a data provider are a different use case...
Image Management Workflow Using Mosaic Datasets
Highly Scalable, From Small to Massive Volumes of Imagery

Create Catalog of Imagery
- Reference Sources
- Ingest & Define Metadata
- Define Processing to be Applied

Apply:
- On-the-fly Processing
- Dynamic Mosaicking

Access as Image or Catalog
Support for Aerial and UAV/UAS Imagery data

• Use Mosaic Dataset to manage both film and digital frame camera data

• A generic solution to support thousands of different cameras

• Required information:
 - Interior orientation (camera parameters)
 - Exterior orientation (unique frame parameters)
Basic workflow in ArcGIS

- Create Mosaic Dataset
- Use the appropriate Raster Type to ingest data from different sensors
 - Applanix
 - Match-AT
 - Frame Camera *(added at 10.3.1)*
- Populate integrated metadata into Mosaic Dataset
 - Sensor location (x,y,z) and orientation (o,p,k)
 - Other metadata may be added to facilitate management & analysis
- Share as image service (optional)
Two approaches

- **Images with complete orientation parameters**
 - LeadAir
 - UltraCam
 - etc.
 ➔ Generate Frames and/or Cameras table from calibration report, etc.

- **Orientation parameters generated by software**
 - Drone2Map for ArcGIS
 - Pix4d Mapper™
 - Harris/Icaros OneButton™
 - etc.
 ➔ Generate Frames and/or Cameras table from exported project report.
Prepare inputs for *Frame Camera* Raster Type

- Consolidate exterior/interior orientation parameters
 - GPS file
 - Camera file
 - Frame parameters file (*.txt, *.csv, or *.xml)

- Create Frames and/or Cameras table
 - Format the orientation parameters to *Frame Camera* Raster Type schema
 - Supports radial distortion correction
 - Works for any camera
 - Input format can be csv/txt/feature class/GDB table

See in ArcGIS Help System:
http://esriurl.com/FrameSchema
http://esriurl.com/CameraSchema
Demo
Mosaic dataset workflow
Frame Camera Raster Type – Exterior orientation

Frame table

- Required: PerspectiveX/Y/Z and image path (relative or absolute)
- Omega/Phi/Kappa
- Add raster info fields to speed up ingest process
 - NCols, NRows, NBands, PixelType, SRS

<table>
<thead>
<tr>
<th>PerspectiveX</th>
<th>PerspectiveY</th>
<th>PerspectiveZ</th>
<th>Omega</th>
<th>Phi</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>461681.6722</td>
<td>31588470.35</td>
<td>809.574538</td>
<td>-0.054682</td>
<td>-0.139704</td>
<td>-179.71770</td>
</tr>
<tr>
<td>461683.087</td>
<td>3159371.445</td>
<td>811.472574</td>
<td>-0.020823</td>
<td>-0.063748</td>
<td>-179.64660</td>
</tr>
<tr>
<td>461682.6709</td>
<td>3158279.916</td>
<td>811.971936</td>
<td>-0.106496</td>
<td>0.456209</td>
<td>-179.51621</td>
</tr>
<tr>
<td>461682.0233</td>
<td>3158173.322</td>
<td>812.724519</td>
<td>-0.086568</td>
<td>0.000266</td>
<td>-179.54476</td>
</tr>
<tr>
<td>461681.5294</td>
<td>3158074.227</td>
<td>813.701214</td>
<td>-0.0777</td>
<td>0.206639</td>
<td>-179.64863</td>
</tr>
<tr>
<td>461681.6746</td>
<td>3157975.307</td>
<td>814.514652</td>
<td>-0.052909</td>
<td>0.052173</td>
<td>-179.56249</td>
</tr>
<tr>
<td>461692.6923</td>
<td>3157076.759</td>
<td>815.005939</td>
<td>-0.020786</td>
<td>-0.014977</td>
<td>-179.84698</td>
</tr>
<tr>
<td>461684.4121</td>
<td>3157777.858</td>
<td>814.663181</td>
<td>-0.036867</td>
<td>-0.056924</td>
<td>-179.74516</td>
</tr>
<tr>
<td>461685.7635</td>
<td>3157679.019</td>
<td>813.618601</td>
<td>-0.037719</td>
<td>0.139521</td>
<td>-179.61517</td>
</tr>
<tr>
<td>461685.702</td>
<td>3157580.669</td>
<td>811.834429</td>
<td>-0.056905</td>
<td>0.199430</td>
<td>-179.73050</td>
</tr>
</tbody>
</table>
Frame Camera Raster Type – Interior orientation

Camera table

- Focal length (microns)
- Principal point (microns)
- Image to camera affine transformation
- AverageZ or DSM
- Radial/Konrady correction

\[x' = x \cdot (K_0 + K_1 \cdot r^2 + K_2 \cdot r^4 + K_3 \cdot r^6 + K_4 \cdot r^8) \]
\[y' = y \cdot (K_0 + K_1 \cdot r^2 + K_2 \cdot r^4 + K_3 \cdot r^6 + K_4 \cdot r^8) \]

<table>
<thead>
<tr>
<th>FocalLength</th>
<th>PrincipalX</th>
<th>PrincipalY</th>
</tr>
</thead>
<tbody>
<tr>
<td>79887.2</td>
<td>-13.3</td>
<td>-54.6</td>
</tr>
<tr>
<td>108359.9</td>
<td>59.9</td>
<td>-147.6</td>
</tr>
<tr>
<td>108456.5</td>
<td>-10.3</td>
<td>-3.9</td>
</tr>
<tr>
<td>108442.3</td>
<td>-12.2</td>
<td>9.2</td>
</tr>
<tr>
<td>108262.6</td>
<td>45.6</td>
<td>-217.4</td>
</tr>
</tbody>
</table>

\[C = ((\text{cols}/2) \cdot 0.5) \times \text{PS} \]
\[R = ((\text{rows}/2) \cdot 0.5) \times \text{PS} \]

<table>
<thead>
<tr>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-26652.8</td>
<td>5.2</td>
<td>0</td>
<td>20176</td>
<td>0</td>
<td>-5.2</td>
</tr>
</tbody>
</table>

where PS is camera’s film pixel size in microns.

<table>
<thead>
<tr>
<th>Konrady</th>
<th>Distortion Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0.00000052038492755676\times10^15</td>
<td>0.0000000015076531614740</td>
</tr>
<tr>
<td>0:0.000000525505681466862</td>
<td>0.000000001246376547415</td>
</tr>
<tr>
<td>0:4.704485025441439e-06</td>
<td>6.7436369915697011e+10</td>
</tr>
<tr>
<td>0:4.20379212193367e-06</td>
<td>5.47865298405317e-06</td>
</tr>
<tr>
<td>0:4.81541224522294e-06</td>
<td>1.0096781474770397e-06</td>
</tr>
</tbody>
</table>
Convert Drone2Map project to Mosaic Dataset

- Drone2Map project contains calibrated interior/exterior orientation parameters

- Custom python tool to convert Drone2Map project to mosaic dataset

- Provide mosaic view of the drone image collection without generating single ortho mosaic image
Oblique Image support

- Frame camera mosaic dataset is oblique aware
 - Sensor Azimuth - indicate camera horizontal direction (0 ~ 360)
 - Sensor Elevation – indicate camera vertical direction (0 ~ 90)

- Query these value to determine
 - Whether a image is oblique
 - The image’s look angle

- New Web Appbuilder “Oblique Viewer” widget
 - Create comprehensive web app to view oblique images from frame camera image service
 - Perform mensuration
Alternative workflow for UAV projects

Data Management of single frame images as well as orthomosaics and DSMs
Imaging modes and data: UAV data collection

- **Single image frames**
 - Geotagged, or may include full orientation metadata
 - May be nadir or oblique (low / high)

- **Aerial video**
 - Typically geotagged (GPS only)
 - May have MISB (orientation) metadata
Data Products from UAV data collection (imagery based)

- Orthorectified mosaic
- Digital Surface Model (DSM)
- Orientation metadata (nadir/oblique)
 - Multiple view angles
- 3D point clouds
- 3D models
Automated workflow for Drone2Map (and similar) projects

- Organize Orthorectified Mosaic, Digital Surface Model, and Oriented Frames into Mosaic Datasets (single project)

- Compile multiple projects into a managed collection

- Based on the Image Management Workflows
Demo
Automated workflow for management of Drone2Map products
For full motion video from UAV (drone)

- Refer to another presentation at UC 2016:

Drones in ArcGIS

Thu 30, 1:30 PM – 2:45 PM

Room 14 A
Summary – and links to further information

Best Practice Workflows for Image Management

Our focus was on creating the mosaic dataset for a single data collection using the *Frame Camera Raster Type*...

For more info re: data management & automation:

- Resource Center landing page http://esriurl.com/6005
- ArcGIS Online Group http://esriurl.com/6539
- Downloadable scripts & sample data
- Recorded webinar: http://esriurl.com/LTSImgMgmt