Sensor Observation Service for the GeoEvent Extension

Making sensor data come alive

Benjamin Proß, Matthes Rieke, Sebastian Drost
(52°North GmbH, Münster, Germany)

Marten Hogeweg
(ESRI Inc.)

ESRI UC 2017
Motivation
Intentions

• Sensor Web technologies are increasingly used
 - Several sensor data providers and SOS instances
 • NOAA, IOOS, NANOOS
 • USGS
 • German Federal Waterways Administration
 • Air quality measurements in Europe

• Accessibility of near real-time sensor data for the ArcGIS platform is required
Observations & Measurements

- Used for encoding data observed by sensors
- Observation comprises
 - Timestamp
 - Value (if applicable including unit of measurement)
 - Observed property
 - Feature of interest
- O&M 2.0 data model approved as an ISO standard
- O&M 2.0 XML encoding approved as an OGC standard
Sensor Observation Service

- Pull-based access to observations
- Mediator between:
 - client <-> data archive / simulation / real-time sensor system
- Hides the heterogeneous structure of proprietary sensor data formats and protocols
- Data formats: O&M and SensorML
- Versions: 1.0 and 2.0
Approach

• Use of the ArcGIS GeoEvent Extension for Server
 - Requesting sensor data from an OGC Sensor Observation Service (SOS)
 - Processing and filtering sensor data
 - Transfer sensor data to different endpoints (e.g. Feature-Service, Stream-Service)

• Requirements:
 - Development of an Input Connector for requesting a SOS
Architecture
Sensor Observation Service for the GeoEvent Extension

SOS Input Connector

SOS Inbound Transport

Observation Parameters:
- SOS URL
- Offering
- Observed Property
- Procedure

Request Parameters:
- Request Interval
- Initial Request

SOS Inbound Adapter

- Byte [] deserializing
- XML parsing
- GeoEvent Definition

GeoEvent creation

GeoEvent
SOS Input Connector
SOS Inbound Transport

• Use of a polling mechanism to request and receive sensor data from an SOS server
 - Request interval as a parameter
• Requests only new data that was available since the last request
• Time filter as a request parameter

http://www.pegelonline.wsv.de/webservices/gis/sos?
request=GetObservation&observedProperty=Wasserstand&
(...)&eventTime=2017-02-13T12:30:00.000/2017-02-
13T12:45:00.000&(...)
SOS Inbound Transport

- Process flow of the SOS Inbound Transport

![Diagram showing the process flow of the SOS Inbound Transport](image)

- **initial request:**
 - Start: \(n \) days ago
 - End: current time
- **2nd request:**
 - Start: \(T_1 \)
 - End: current time
- **3rd request:**
 - Start: \(T_2 \)
 - End: current time

current time - \(n \) days ago

latest sampling Time \(T_1 \)

latest sampling Time \(T_2 \)

latest sampling Time \(T_2 \)
SOS Inbound Transport

- Time filter very important for retrieving data
 - Observations consist of two timestamps:
 - `resultTime` and `phenomenonTime`
 1. Data could arrive later in the database → `resultTime > phenomenonTime`
 2. If data is requested periodically, observations can be missed

→ Connector considers the `phenomenonTime` of previously retrieved data to create the time filter for the next period
Visualization

• Water level observation with the Operations Dashboard
Demonstration

• Demo video
Next Steps

• Integration with additional SOS instances available for public use
 - NOAA Oceanology data
 - IOOS Oceanology data
 - European Air Quality data

• Making the SOS Adapters Open Source
 - requires additional testing
Thanks for your attention!

Any Questions?

Benjamin Proß (b.pross@52north.org)
Matthes Rieke (m.rieke@52north.org)
Sebastian Drost (s.drost@52north.org)
Marten Hogeweg (mhogeweg@esri.com)