DEVELOPING A GIS APPLICATION TO SUPPORT PIPELINE DEWATERING ANALYSIS

ANGELA REMER, PMP, GISP

LAUREN TIJERINA, GISP
TARRANT REGIONAL WATER DISTRICT

• ONE OF THE LARGEST RAW WATER SUPPLIERS IN NORTH TEXAS

• OWN AND OPERATE 4 RESERVOIRS

• MAINTAIN 22 MILES OF THE TRINITY RIVER FLOODWAY/FW LEVEE

• OWN AND OPERATE 150 MILES OF LARGE DIAMETER RAW WATER PIPELINE

• CONSTRUCTING AN ADDITIONAL 150 MILES OF LARGE DIAMETER RAW WATER PIPELINE IN PARTNERSHIP WITH DALLAS WATER UTILITIES
A TYPICAL DEWATERING SCENARIO BEGINS WITH ISOLATING THE PIPELINE BY CLOSING BUTTERFLY VALVES AND, WHERE APPLICABLE, DRAINING THE PIPELINE TO A RESERVOIR, THEN OPENING A NUMBER OF BLOW OFF VALVES TO DRAIN WATER.
PIPELINE FLUID LOSS ESTIMATOR TOOL
AKA PFL OR “DEWATERING” TOOL NEEDS ASSESSMENT

- REPORT WATER LOSS TO THE TEXAS WATER DEVELOPMENT BOARD
- ENHANCE VALVE MANIPULATION/DEWATERING Efforts
REQUIREMENTS

• ESTIMATE WATER LOSS TO REPORT BACK TO THE WATER DEVELOPMENT BOARD

• VISUALIZE WHERE WATER REMAINED IN PIPE AFTER A DEWATERING EXERCISE

• PROVIDE AN INTERFACE FOR TRWD PIPELINE OPERATORS TO VISUALIZE DIFFERENT VALVE MANIPULATION SCENARIOS
ESRI ARCMAP ADD-IN
TRANSITION TO WEB APPLICATION
PIPELINE FLUID LOSS ESTIMATOR TOOL

Pipe: CC

- **Drained:** 1,283,254.50 gal
- **Remaining:** 7,536,826.97 gal

Table:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>ElevationFrom</th>
<th>ElevationTo</th>
<th>MeasureFrom</th>
<th>MeasureTo</th>
<th>MeasureFromROW</th>
<th>MeasureToROW</th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>563.58657726372291</td>
<td>560.16</td>
<td>15607.07568143321</td>
<td>21296.527691517895</td>
<td>16491.99574613065</td>
<td>21286.602173312935</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>689.16</td>
<td>623.41666667</td>
<td>21296.527691517895</td>
<td>22783.05468407867</td>
<td>22774.21948196607</td>
<td>22774.21948196607</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>623.41666667</td>
<td>646.03</td>
<td>22783.05468407867</td>
<td>25221.855207021414</td>
<td>25212.033348541645</td>
<td>25212.033348541645</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>646.03</td>
<td>646.03</td>
<td>25221.855207021414</td>
<td>25665.57517177667</td>
<td>25647.845217331997</td>
<td>25647.845217331997</td>
<td>91734.69832</td>
</tr>
<tr>
<td>6</td>
<td>646.03</td>
<td>646.03</td>
<td>25665.57517177667</td>
<td>25992.58295666429</td>
<td>25984.85706070654</td>
<td>25984.85706070654</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>648.35</td>
<td>648.35</td>
<td>25992.58295666429</td>
<td>26233.564768836262</td>
<td>26215.948209638693</td>
<td>26215.948209638693</td>
<td>48876.35737</td>
</tr>
<tr>
<td>6</td>
<td>648.35</td>
<td>648.35</td>
<td>26233.564768836262</td>
<td>26762.90578738718</td>
<td>26756.17241060009</td>
<td>26756.17241060009</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>656.48262</td>
<td>656.48262</td>
<td>26762.90578738718</td>
<td>28423.409777073645</td>
<td>28423.409777073645</td>
<td>28423.409777073645</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>656.48262</td>
<td>656.48262</td>
<td>28423.409777073645</td>
<td>30991.40286863794</td>
<td>30991.40286863794</td>
<td>30991.40286863794</td>
<td>559320.0129</td>
</tr>
</tbody>
</table>
PFL TOOL DEVELOPMENT
DATA REQUIREMENTS

- LINEAR REFERENCED PIPELINE ROUTE(S)
- LINEAR REFERENCED VALVES
- LINEAR REFERENCED ELEVATION POINTS
- ROW STATIONING/ROUTE(S)
BENEFITS

• MORE ACCURATE WATER LOSS REPORTING
• VISUALIZE DEWATERING SCENARIOS
• ESTIMATING WATER LOSS FROM PIPE FAILURES
LESSONS LEARNED: NEEDS ASSESSMENT

• ANALYSIS IS ONLY AS GOOD AS YOUR DATA

• AS EXPECTED, PERFORMANCE CAN BE SLOW WITH TOO MUCH DATA

• IDENTIFY QUESTIONS THAT WILL BE ANSWERED WITH THE TOOL
 • WHEN THE TOOL WAS ORIGINALLY DEVELOPED THE DATA WAS NOT DEVELOPED TO ANSWER THE RIGHT QUESTIONS AND HAD TO BE UPDATED
 • EACH PIPELINE WAS CONSIDERED A SEPARATE LINEAR REFERENCED MODEL, BUT WHEN WE BEGAN TRYING TO ANSWER QUESTIONS WITH THE TOOL WE RECOGNIZED THE NEED TO COMBINE ALL SECTIONS INTO ONE COHESIVE LINEAR REFERENCED SYSTEM

• KEEP YOUR AUDIENCE AND USERS IN MIND