SLR, Climate Change, Infrastructure Solutions, Adaption and GIS

Presenter:

Francisco D’Elia B.S., M.Sc.
Geographic Information Systems
Franciscodelia@miamibeachfl.gov
SLR, Climate Change, Infrastructure Solutions, Adaption and GIS

Data Acquisition, Integration and Impact Modeling

- Geographic Information Systems and Survey
- Aerial LIDAR
- Topographic LIDAR
- Aerial Survey and Positioning
- Bathymetric Survey – Sonar
- GPS Tracer / Flow Meter

![Graph](image_url)

Unified Sea Level Rise Projection
(Southeast Florida Regional Climate Change Compact, 2015)

<table>
<thead>
<tr>
<th>Year</th>
<th>IPCC AR5 Median (inches)</th>
<th>USACE High (inches)</th>
<th>NOAA High (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2060</td>
<td>14</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>2100</td>
<td>31</td>
<td>61</td>
<td>81</td>
</tr>
</tbody>
</table>
SLR, Climate Change, Infrastructure Solutions, Adaption and GIS
SLR, Climate Change, Infrastructure Solutions, Adaption and GIS

Note: All elevations are in NAVD 88.

- Critical Infrastructure (min.) 8.44 ft.
- City Freeboard (min.) 7.44 ft.
- City Base Flood Elev. (min.) 6.44 ft.
- Top of Sea Wall (min.) 5.7 ft.
- SFR Lot Grade (min.) 5.0 ft.
- Crown of Road (min.) 3.7 ft.
- Sept. 2015 Extreme Tidal Event 2.1 ft.

2015 NOAA Low 2015 IPCC Medium 2015 USACE High 2015 NOAA High
Aerial LIDAR Data

1- Existing data allows the extraction of ground elevations, buildings and other features
Aerial LIDAR

1. LIDAR QA – QC. 2007 vs 2015
2. Re-Classification – 2015 / LP360 – HARRIS - ESRI
3. Validation – Accuracy Test - City Benchmarks
4. Feature Extraction – Object Oriented Algorithms
5. Integration
6. Products
Building Base Height
NAVD88 US Feet

- **≤3.2**
- **≤5**
- **>5**

Legend:
- **Biscayne Bay**
- **Biscayne Bay Aquatic Preserve**

Scale:
- 0
- 0.05
- 0.1
- 0.2 Miles
SLR, Climate Change, Infrastructure Solutions, Adaption and GIS

Note: All elevations are in NAVD88.

- Critical Infrastructure (min.) 8.44 ft.
- City Freeboard (min.) 7.44 ft.
- City Base Flood Elev. (min.) 6.44 ft.
- Top of Sea Wall (min.) 5.7 ft.
- SFR Lot Grade (min.) 5.0 ft.
- Crown of Road (min.) 3.7 ft.
- Sept. 2015 Extreme Tidal Event 2.1 ft.

- 2015 NOAA Low
- 2015 PCC Medium
- 2015 USACE High
- 2013 NOAA High

- Average Sea Wall Elevation: 3.1 ft
- Average Ground Parcel Elevation: 3.48 ft
- Future Sea Walls: 5.7 ft
- Future Finish Floor Elevation: 7.44 ft
- Proposed Crown of Road: 3.7 ft
- Proposed Edge of Pavement: 3.2 ft
- Proposed Edge of Pavement: 2.19 ft
- Existing Edge of Pavement where crown below 3.7: 2.9 ft
- Existing Crown of Road where below 3.7: 2.19 ft

Harmonization

Right of Way
SLR, Climate Change, Infrastructure Solutions, Adaption and GIS

Mobile LIDAR Survey

1- Urban environment: Roads, buildings, ROW 3D modeling and feature extraction.

Mobile LIDAR unit mounted on SUV for urban infrastructure 3D mapping
Topographic LIDAR survey grade feature extraction capabilities
SLR, Climate Change, Infrastructure Solutions, Adaption and GIS
Bathymetric and Seawall LIDAR Survey

Seawall Survey – Focus on sea wall from horizontal and vertical perspectives.

Mobile LIDAR unit mounted on boat for coastal infrastructure 3D mapping.
Bathymetric and Seawall LIDAR Survey

Seawall Survey – Focus on sea wall from horizontal and vertical perspectives.

Collins Canal – Bay Road end, 3D Point Cloud capturing seawall conditions and height
Geological Survey of Miami Beach

- AECOM and USGS
- 42 Monitoring Wells
- Characterize Lithology
- Identify Confining Geological Unit

- Confining unit found at the Keys starting at 250 f.
- So far in Miami Beach no confining unit were found at 330 f.
- Future drilling will go to 400.
Geological Survey of Miami Beach

- USGS and the City of Miami Beach
- 42 Monitoring Wells – ground water levels and SLR.
- Characterize Lithology
- Identify Confining Geological Unit

- Confining unit found at the Keys starting at 250 f.
- So far in Miami Beach no confining unit were found at 330 f.
- Future drilling will go to 400.
Storm Surge Modelling

- Existing models are too coarse to represent the effects of storm surge in Miami Beach.
- A high resolution storm surge model could also assist on validating infrastructure changes and future adaptation strategies.
Water Quality and Circulation Patterns in Biscayne Bay

1- Circulation Patterns
2- Seagrass Mapping
3- Chlorophyll Levels
4- Storm Water Discharge Diffusion
Circulation Patterns (Direction and Velocity)

- Flow Meter – Stationary sensor: Current, direction, pressure, temperature, conductivity and turbidity

Midas ECM – Electromagnetic Current Meter

Lagrangian Tracer

Drifter tracks and HF Radar current readings plotted on top of remotely sensed Sea Surface Temperature (SST).
Circulation Patterns (Direction, Velocity and Temperature)

- Flow Meter – Stationary: Current, direction, pressure, temperature, conductivity and turbidity
Unmanned Aircraft System and Hydro Drone Survey

UX5

UX5 HP

SONAR

MikaSense Red Edge Multispectral Sensor

SONY aR7

SLR, Climate Change, Infrastructure Solutions, Adaptation and GIS

GPS Tracer

esri

PIX4D

Dell
Turbidity Mapping

- Aerial Photography: Diffusion and dispersion patterns.

Outfall discharge or dye release

Dispersion patterns
Algae Concentration

- 5 Band Multispectral Sensor

- Seamless mosaic

- e.g. Cyanobacteria in the Baltic Sea
Resiliency Data Management Framework
Overview

Data Acquisition, Integration and SLR Impact Modeling

- Geographic Information Systems
 - Aerial LIDAR
 - Topographic LIDAR
 - Bathymetric Survey – Sonar
 - GPS Tracer / Flow Meter

- Engineering
 - Dynamic Storm Surge and SLR Modelling
 - Hydrologic studies
 - Synthetic modelling solution validation
 - Ground water modeling
 - Water quality studies
 - Wind circulation study

- Emergency Response
 - Post event assessment
 - SLR risk assessment
 - ZIKA prevention

- Environment and Sustainability
 - Green infrastructure
 - Water circulation
 - Beach, reef and coastal vegetation monitoring
 - Water quality monitoring

- Urban Planning
 - Historical districts vulnerability assessment
 - Historical buildings scanning “As Builds”
THANK YOU

QUESTIONS?