The National Danish Transport Model

Otto Anker Nielsen, oani@dtu.dk
Professor, PhD
Technical University of Denmark

Bjarke Brun, bb@rapidis.com
Partner, MSc
Rapidis
Background / The case for a national model

• Recommendation from Government Committee

The foundation for decisions must be strengthened by developing a national transport model system, which encompass all the different modes and their interrelations

The model must support socioeconomic evaluations and strengthen the basis for prioritizations in the transport sector
Vision

• Open and easy to use model
• Cover whole country, all modes, passenger & freight
• Different types of users;
 – Users at (large) public authorities
 – Consulting firms typically supporting customers (mostly public authorities)
 – Transit operators and other transport companies
 – Other universities
 – Others (NGO’s, think tanks,...)
• Modular system to ease maintenance
• ArcGIS-based
The national transport model – Decided in 2009, started may 2010

Organization:

• Project coordinated by DTU Transport
 – A number of tasks outsourced
 – Public authorities deliver data and work

• Lead by the Ministry of Transportation

• Steering committee and user group
 – Ministry of Transport, Road Directorate, National Transport Authority, Railnet Denmark

• Released versions open for third parties on a lease basis

• Budget of about 10 million $
Examples of projects

• (semi) high speed rail forecasts for national transport
• New urban railway timetable
• Consequences of opening more stations on existing lines
• Buss Rapid Transit in Copenhagen
• New freeways in Jutland
• New fixed link (bridge) between each and west Denmark
• Toll scenarios
Methodology

- State-of-the-art structure
 - Used in many other large-scale transport models
 - Danish National Model
 - Dutch national Model
 - Sampers (although not using pivoting)
Methodology

- Parallel passenger and freight demand models
Methodology

- Parallel passenger and freight demand models
- Pivoting
 - Calibration to base-line matrices (invariance to absolute deviation in the model)
Methodology

• Parallel passenger and freight demand models

• Pivoting
 – Calibration to base-line matrices (invariance to absolute deviation in the model)

• Assignment
 – SUE based utilising matrix thinning
Methodology

- Parallel passenger and freight model
- Pivoting
 - Calibration to base-line matrices (invariance to absolute deviation in the model)
- Assignment
- Improved convergence methodology (WMSA)
Smart data processing

- Road transport
 - Commercial road network
 - Traffic counts from many sources
- Transit (Public transport)
 - Travel planner import
 - Counts
 - Link of busses to road network
Features / specific tools

- Intelligent Scenario Management
 - Forecast years
 - Comparing projects
Features / specific tools

• Intersection delay modelling
Features / specific tools

- Intersection delay modelling
Features / specific tools

- Easy sketching of public transport line and time table scenarios
Model results

• Flows
 – Road traffic
 – Transit flows on rail and roads
 – Change patterns at transit terminals
• Filtered results
• Key figures / aggregated numerical results
• Comparative maps showing differences between model results
Model results

– Road flows
Model results

- Transit flows on rail and roads
Model results

- Accurate modelling of transit lines and stops allows precise maps and difference maps.
Model results

- Comparative maps showing differences between model results
Model results

- Transit embarkation
Model results

- Key figures / aggregated numerical results

<table>
<thead>
<tr>
<th></th>
<th>Walk</th>
<th>Bike</th>
<th>Car driver</th>
<th>Car passenger</th>
<th>Public</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuting</td>
<td>218</td>
<td>3749</td>
<td>44628</td>
<td>6659</td>
<td>20464</td>
<td>215</td>
</tr>
<tr>
<td>Business</td>
<td>7</td>
<td>85</td>
<td>12796</td>
<td>4576</td>
<td>2269</td>
<td>38696</td>
</tr>
<tr>
<td>Other</td>
<td>1352</td>
<td>3457</td>
<td>69418</td>
<td>59210</td>
<td>14093</td>
<td>88318</td>
</tr>
</tbody>
</table>

Transportation Activity (1000 Person Kiloneter) pr working day
Traffic Impacts Cost Benefit analyses

- Key numbers for impact analyses
 - Time savings
 - Costs
 - Energy use
 - Emissions
 - Safety
- Link to "Teresa" (official Danish model for CBA)
Technical architecture

- **Master-DB / CalcDB:** Resilient against IT glitches
- **Roles**

![Diagram of technical architecture]
Technical architecture

• Changes to model workflow and datasets do not require changes to User Interface
Platform benefits

• GIS is central
 – Data integrity, DBMS support, multi-user, editing, map production, industry standard
• Data management is vital for building and using transport models
 – 40% of entire modelling budgets are used on data and data management
 – Data quality is essential for the validity and reliability of transport models
 – ArcGIS with SQL Server supports this requirement very well
• Openness is important
 – Model results are frequently used in many different “downstream” analyses
 – Every single data set in the model is simply a database table. Everything lives in SQL Server.
• Geoprocessing is simply ideal for encoding very complex modelling workflows with a mix of drag-and-drop programming and very accessible Python scripting
 – And has very smooth integration with database programs (Stored Procedures)
• Network analyst lets us easily integrate commercial street networks
 – Navteq / Here is used. Intersection data added on top
• Traffic Analyst
 – Rapidis deliver software-changes on-demand
• Model builder works as documentation
Conclusions

• A multi-user national model system
 – ArcGIS Enterprise
 – SQL Server
• Modular calculation core
 – Traffic Analyst software
 – Network Analyst
 – Tailor made code
 – Other
• Able to be used of a wide user group