Globally Estimating the Population Characteristics of Small Geographic Areas

Tom Fitzwater
U.S. Census Bureau | Population Division

Learn more at: census.gov/population/international
What we know
Where do people live?

- **Difficult to measure and quantify.**
- **Characteristics:**
 - Age and sex distribution, poverty, literacy, access to services, etc.
- **Measuring at many scales:**
 - Country
 - Region
 - City
 - Neighborhood
 - Person

Data users want answers at **every scale.**
Regional population change

Projected population change: 2016 to 2050

Africa
1,118,630,719

Asia
747,303,644

Latin America & Caribbean
124,098,118

North America
80,094,450

Oceania
10,943,396

Europe
-29,773,559

= 10,000,000 people
Population distribution

People per sq. km
- 500.0 or more
- 100.0 to 499.9
- 50.0 to 99.9
- 25.0 to 49.9
- 10.0 to 24.9
- 1.0 to 9.9
- Less than 1.0

Source: U.S. Census Bureau, subnational population estimates, 2011.
Learn more at: census.gov/population/international
Our methods
International Projects

- Applied research and analysis:
 - International population estimates and projections
 - HIV/AIDS research tools
 - Global aging issues

- Geospatial products:
 - Subnational population estimates
 - Gridded products (e.g., Demobase)
What we produce

- Use **multiple inputs** for guidance, including censuses and surveys.
- Estimates and projections:
 - Evaluate and separately estimate base **population**, **fertility**, **mortality**, and international **migration** for each country.
 - Analyze and **project trends** in above variables which change rates and age/sex composition **over time**.
- **Additional indicators**

Censuses
- Infrequent
- Detailed geography

Surveys
- More frequent
- Less detailed geography
- More characteristics

Geospatial
- Administrative boundaries
- Statistical boundaries
Common census and survey variables

- No country releases individual records, except in the form of “sanitized” public microdata.
- All censuses have **total population, age, and sex** variables.
- Other variables differ among countries.
 - **Personal**: ethnicity, language, health, fertility, mortality
 - **Family**: marital status, household size
 - **Migration**: birthplace, citizenship
 - **Education**: literacy, level of education
 - **Work**: employment, job categories
 - **Economic**: income, poverty
 - **Housing**: wall/roof materials, building age
 - **Land use**: urban/rural, agriculture
 - **Access to services**: water, electricity, transport, communications
How we evaluate data

In our products, we account for census inaccuracies or unexpected events, such as:

- Systematic **undercounting** of women and children.
- **Major events**, such as disasters, war, disease.
- Unexplained or **unlikely population growth**.
- **Differential coverage** between censuses.
- Discrepancies in age reporting, such as **age heaping**.
- Problems reported in a **post-census survey**.

These considerations are critical to ensure proper analysis of a country’s population characteristics.
Studying change over time within a country

- **Comparability:**
 - Even if an indicator is present in 2 censuses/surveys, **we do not assume they are directly comparable.**
 - Methods, definitions, or wording of the question may have changed, rendering comparisons misleading.

- **Evolving geography:**
 - Some countries redraw boundaries frequently.
 - **We match census or survey data to available geographic boundaries.**
Comparing data between countries

- Working across borders is a significant challenge.
- From a geospatial perspective, boundaries from one country’s government may not match boundaries from neighboring country.
- Census and survey variables may not be comparable from country to country due to differing definitions.
 - Example: How do you define *urban areas*?
Different time series

Censuses are held on different dates and at varying frequency.

Longest period of time since last census:
1) Lebanon (1932)
2) Western Sahara (1970)
3) Afghanistan (1979)
4) D.R. Congo (1984)

- Green: 3
- Yellow: 2
- Orange: 1
- Red: 0
- Gray: Countries no longer conducting a traditional census

Geospatial data

- **International land boundaries**
 - Large-Scale International Boundaries (LSIB) (geonode.state.gov)
 - **Shorelines and inland water bodies**
 - World Vector Shoreline (WVS), or national sources.
 - **Internal/subnational boundaries**
 - National sources, GADM, open data repositories.

- **Persistent challenges:**
 - Multiple interpretations for international boundaries.
 - Representing the area of enumeration.
 - Inland water bodies.
 - Finding freely licensed subnational data.
 - Matching subnational boundaries with statistical data.
New tools and methods
New tools and methods

- We leverage our agency’s **strengths:**
 - One of the **largest holders** of geographic information in the U.S. government.
 - **Center for excellence** in production and understanding of human geography and population data.
 - Continually **innovating** to conduct U.S. censuses and surveys more efficiently and effectively.
- We apply tools and methods built for domestic purposes to international projects.
Automated data collection & categorization

Objectives:

- Index datasets and publications from key websites.
- Categorize datasets as useful or not useful.
- Structure datasets regardless of format (PDF, XLSX, CSV, API, HTML, etc.).
- Save staff time and increase data availability.

Primary toolset:

- Apache Nutch (web scraper), Python Natural Language Toolkit (language), Python scikit-learn (machine learning classifier)
Automated data collection & categorization

- Build language-specific **training datasets**.
- **Extract text** from datasets or documents (initial focus: PDF).
- Identify common features based on \(n \)-grams, or sequences of \(n \) words.
 - e.g., 2-gram = 2 word pair like “demographic survey”
- Tested Naïve Bayes & **Support Vector** classifiers.
 - Promising early results: \(~93\%\) accuracy (SVM) for English-language documents, compared to human classification.

Future considerations:
- Continuously search for new data.
- Tag data by subject, source, location.
- Automatically extract and structure data tables.
- Develop feedback process to improve classification.
- Explore geospatial data identification and extraction.
- Expand to other file formats and APIs.
- Cloud architecture to scale up/down easily.
Building extraction

- Identifying **physical features** from **remotely sensed** data.
- Use a combination of:
 - High resolution imagery (aerial or satellite)
 - Light detection and ranging (lidar)
 - Vector geospatial data (e.g., road networks)
- Work under way to enhance U.S. housing unit location accuracy in support of census/survey operations.
 - Census Bureau holds 150 million+ housing unit locations for U.S.
- Considering applying similar methods to other countries to refine estimates of population distribution.
Constructing built-up layer

- Built/not-built derived from normalized difference vegetation index (NDVI).
- Change identified by comparing multiple time periods.
Extracting ground from lidar

Lidar point cloud. → Queried for ground points. → Ground points converted to raster layer. → Expanded ground raster layer.
Extracting buildings

Expanded ground raster (left) used as mask to remove low areas of Built/Not Built layer for latest year (right).

Resultant raster layer represents primarily buildings.

Building polygons generated and compared with existing point features in collection. Footprints and heights captured.
Extracting roads

Start with buildings raster layer

Combine with non-ground point cloud to generate Built/Not Built layer

Contraction and dilation to separate roads from parking lot to get paved area layer

Small road segments eliminated and intersected with existing road vectors.

Misaligned road segments identified and saved.
Population/settlement surfaces

- Increasing number of datasets are providing estimates of population and settlements in raster/gridded format.

- Advantages:
 - Custom geography (not dependent on aggregate results).
 - Works across many scales (from neighborhoods to continents).
 - Ideal for scientific applications.
Example datasets

- **Demobase** (U.S. Census Bureau)
- **WorldPop** (University of Southampton)
- **Gridded Population of the World** (CIESIN)
- **High Resolution Settlement Layer** (Facebook/CIESIN)
- **LandScan** (Oak Ridge National Laboratory)
- **Global Human Settlement Layer** (Joint Research Commission)
- **Global Urban Footprint** (German Aerospace Center)
Example methodology: Demobase

- Starting point: Correlation between population distribution and built-up area.
- **Probability layer**: Combination of built-up area and other layers.
 - Where are humans likely to live?
 - Population assigned to pixels based on fraction of pixel that is built up.
 - Probability layer plays an important role in rural areas.
Example methodology: Demobase

Probability layer combines:

Proximity to built-up
Settlement points
Land cover heterogeneity
Slope and elevation

Detailed methods:
http://dx.doi.org/10.1016/j.rse.2012.11.022
Thank you!

Tom Fitzwater
U.S. Census Bureau | Population Division
john.t.fitzwater@census.gov