Using ESRI’s ModelBuilder to Track Developments and Initiate Infrastructure Projects

Wendy Smith P.E., Orange County Sanitation District
Andy Baldwin, Woodard & Curran

July 2017
ESRI 2017 User Conference

Infrastructure Project Tracker - Agenda

1. Background and Key Goals
2. Business Use Cases
3. Making Decisions
4. Tool Design:
 a. Development Tracker
 b. Data Validation
 c. Project Tracker
5. Tool Implementation
6. Tool Demo
• Evaluate sewer infrastructure based on changing land use and growth:
 • Future flow projections are less reliable
 • Changing flows resulting from conservation
 • Oversized facilities based on old projections

• Upgrade sewer infrastructure ‘as-needed’:
 • Tracking on-going developments
 • On-going verification of CIP needs
 • Predict timing of CIP projects
 • Allocating capacity fees

• Use ModelBuilder to streamline the process:
 • Simple tools built into ArcGIS
 • Custom database to store data and results
 • Integrate with hydraulic model
Key Issues

Using the Hydraulic Modeling

• **Update previous hydraulic model to include:**
 - Changes in base flows
 - Revised flow projections
 - Latest development projects
 - Recent sewer improvements
 - OCSD trunk network

• **Conduct flow monitoring:**
 - Verify latest base flows
 - Assess changes in I&I

• **Use model to update and prioritize CIP:**
 - Revise capacity improvements
 - Optimize diversion settings
 - Develop CIP budget
Making Decisions

• **General decision process for evaluating CIP projects**
 - Receive request
 - Get data
 - Conduct analysis
 - Prepare report
 - Conduct internal review
 - Make decision – to build, defer or cancel project

• **Issues with current practice:**
 - CIP projects are only re-evaluated when master plans are updated
 - No policy / procedure for interim CIP updates
 - Difficult to track developments within member agencies
 - Difficult to associate CIP with flows generated from multiple developments
 - Difficult allocating CIP costs to developers / agencies
Making Decisions
What’s the Problem? – Tracking Growth

![Graph showing flow projection and capacity over years]

- **Existing Capacity**
- **Original Flow Projection**
- **Original Trigger Year**
- **Updated Flow Projection**
- **Updated Design Capacity**
- **Design Capacity**

Year:
- 2020
- 2025
- 2030
- 2035
- 2040

Flow Projection (mgd):
- 0
- 10
Model Building

Population data provided by Center of Demographic Research (CDR)

Population projections:
- Residential – 2015
- Residential – 2040
- Employment – 2015
- Employment – 2040
- Other years included: 2020, 2025, 2030, 2035
Model Building

Step 1: Obtained Developments from Agencies

Agency	**Data Requested**	**Points of Contact**
City of Orange	Sewer System GIS	Neil Millward (GIS Analyst)
Sewer Master Plan	George Liang (Eng. PW)	
Land Use - Major developments	Jennifer Lee (Planning)	
City of Garden Grove	Sewer System GIS	Joseph Schwartz (GIS Analyst)
Sewer Master Plan	Myung Chun & Scott Lo (Eng. PW)	
Land Use - Major developments	Alana Chang & Maira Parra (Planning)	
City of Fountain Valley	Sewer System GIS	Patrick Mullin (Private GIS Consultant)
Sewer Master Plan	Cal Youngberg (City Sewer Dept.)	
Land Use - Major developments	n/a	
City of Anaheim	Sewer System GIS	Keith Linker (Eng. PW)
Sewer Master Plan	Khanh Chu (PW)	
n/a	Jonathan Hefferman (PW)	
City of Fullerton	Sewer System GIS	----
Sewer Master Plan	----	
Land Use - Major developments	Susan Kim (Planning)	
City of Westminster / Midway SAN District	Sewer System GIS	Ken Robbins (Eng. PW)
Sewer Master Plan	n/a	
Land Use - Major developments	Chris Wong (Planner)	
Yorba Linda WD / City of Yorba Linda	Sewer System GIS	Alfredo Vargas (GIS Analyst)
Sewer Master Plan	Anthony Manzano (Eng.)	
Land Use - Major developments	Greg Rehmer (Planner)	
OCSD	Class 1 & 2 Permitted SIU Database	Roya Sohanakl (Env. Compliance Div.)
Project 2-72B & 2-72C (on-going)	Raul Cuellar (CIP Manager)	
n/a	Vicki Francis (Sr. Eng.)	
Center for Demographic Research (CDR)	Current OCP TAZ Population Projections; Follow-up development research.	Deborah Diep (Director)
n/a	Steven Ayers (Asst. Director)	
Tracking Development Growth

Step 2: Compared Developments with CDR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planned: Development</td>
<td></td>
<td>Planned: Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DU Conversion (Persons/DU)</td>
<td></td>
<td>SqFt Conversion (employees/TSP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned: Development</td>
<td></td>
<td>Planned: Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DU2015</td>
<td>DU2040</td>
<td>RPOP15</td>
<td>RPOP40</td>
<td>EMP2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.66</td>
<td>28</td>
<td>NA</td>
<td>28</td>
<td>724</td>
</tr>
<tr>
<td>3.37</td>
<td>1958</td>
<td>156</td>
<td>1162</td>
<td>1158</td>
<td>61</td>
</tr>
<tr>
<td>3.68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.75</td>
<td>1169</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>423000</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>423000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>153766</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>220</td>
<td>0</td>
<td>4.25</td>
<td>935</td>
<td>3.5</td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>2.53</td>
<td>66</td>
<td>18000</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>4.61</td>
<td>600</td>
<td></td>
<td>0</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>4.50</td>
<td>587</td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td></td>
<td>5.28</td>
<td>412</td>
<td></td>
<td>0</td>
<td>1538</td>
</tr>
<tr>
<td></td>
<td>3.20</td>
<td>167</td>
<td></td>
<td>0</td>
<td>1092</td>
</tr>
<tr>
<td></td>
<td>3.27</td>
<td>170</td>
<td></td>
<td>0</td>
<td>1092</td>
</tr>
<tr>
<td></td>
<td>2.73</td>
<td>142</td>
<td></td>
<td>0</td>
<td>1092</td>
</tr>
<tr>
<td></td>
<td>4.48</td>
<td>817</td>
<td></td>
<td>0</td>
<td>3822</td>
</tr>
<tr>
<td>0.00</td>
<td>391</td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td>1.50</td>
<td>391</td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td>2.94</td>
<td>383</td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td>0.00</td>
<td>383</td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td>2.43</td>
<td>570</td>
<td></td>
<td></td>
<td>0</td>
<td>4914</td>
</tr>
<tr>
<td>4.00</td>
<td>521</td>
<td></td>
<td></td>
<td>0</td>
<td>4914</td>
</tr>
<tr>
<td>1.88</td>
<td>440</td>
<td></td>
<td></td>
<td>0</td>
<td>4914</td>
</tr>
<tr>
<td>0.00</td>
<td>NA</td>
<td></td>
<td></td>
<td>0</td>
<td>4914</td>
</tr>
<tr>
<td>2.96</td>
<td>386</td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
<tr>
<td>2.29</td>
<td>298</td>
<td></td>
<td></td>
<td>0</td>
<td>2730</td>
</tr>
</tbody>
</table>
Tracking Development Growth

Step 3: Add Missing Developments to Model
Focused Business Decisions

- **Key business decisions for managing capital improvements:**
 - Determine **size** of capacity improvements to convey development flows
 - Determine **when** to build capacity improvements
 - Proportion **cost** of capacity improvements to developers / agencies

- **Secondary needs:**
 - Track development requests – location, flows and status
 - Integrate hydraulic model with development analysis process
 - Dynamically update CIP listing based on growth
Verify Existing Capacity Improvements

- **Step 1 - Update hydraulic model:**
 - Obtain latest flow projections from CDR
 - Combine development flows with flow projections
 - Add flow projections to model

- **Step 2 – Evaluate existing and future flow scenarios**
 - Run model to determine capacity issues for dry and wet weather conditions
 - Run model for existing and future flow scenarios
 - Determine if previously identified capacity issues are still triggered (per d/D and surcharge criteria)

- **Step 3 - Evaluate proposed CIP solutions**
 - Run model with proposed CIP solutions (from master plan)
 - Determine if proposed solutions still meet future flows (2040) needs
Making Decisions
When to Build Capacity Improvements

- **Step 1 – Update Development Tracking Database:**
 - Collect latest development data (location, flows, dates, status)
 - Update periodically or per development application

- **Step 2 – Update Flow Projections**
 - Adjust base flow projections derived from capacity study

- **Step 3 – Compare Existing Capacities with Updated Flow Projections**
 - Extract capacities from hydraulic model and compare with new flows

- **Step 4 – Evaluate Improvement Trigger Year**
 - Interpolate trigger year

- **Step 5 – Verify Improvement Design Capacity**
 - Compare adjusted 2040 flow projections with existing design capacity
Hydraulic Modeling
Evaluate Capacity using Hydraulic Models

Legend
- Surcharged - Throttle
- Surcharged - Backwater
- Non-surcharge
- Flow Meter

See Figure 3-10
See Figure 5-11
See Figure 3-12
See Figure 3-13

Data Sources
Hydraulic Modeling
Finding Capacity Deficiencies

Wright Street - Hydraulic Profile of Existing Sewer (2040 / Peak Wet Weather)
Hydraulic Modeling
Designing Capacity Improvements

Wright Street - Hydraulic Profile with Capacity Improvement (2040 / Peak Wet)
Tool Development

Designing Tools – Tool Architecture

• **Tool 1: Development Tracker:**
 - Development Specs

• **Tool 2: Data Importing and Validation:**
 - Base Flows
 - Development Flows
 - Project Specs
 - Project Basins

• **Tool 3: Flow Projection Update:**
 - Adjusted Flow Projections (per Project site)

• **Tool 4: Capacity Analysis:**
 - Capacity Analysis:
 - Exceedance Year
 - Revised Design Capacity
Tool Development

Designing Tools – Data Architecture

```
CapacityTracker.gdb
- BaseFlows
- Basins
- DevelopmentSpecs
- ProjectBasins
- ProjectFlows
- ProjectSpecs
```

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>ProjectID</td>
<td>Text</td>
</tr>
<tr>
<td>PWWF2015</td>
<td>Double</td>
</tr>
<tr>
<td>PWWF2020</td>
<td>Double</td>
</tr>
<tr>
<td>PWWF2025</td>
<td>Double</td>
</tr>
<tr>
<td>PWWF2030</td>
<td>Double</td>
</tr>
<tr>
<td>PWWF2035</td>
<td>Double</td>
</tr>
<tr>
<td>PWWF2040</td>
<td>Double</td>
</tr>
<tr>
<td>TriggerYear</td>
<td>Text</td>
</tr>
<tr>
<td>TargetCapacity</td>
<td>Double</td>
</tr>
</tbody>
</table>
Tool Development

Tool 1: Development Tracker

Tool inputs:
- Development specs and flows obtained from developers and/or member agencies

Processing steps:
- Create a new Development Flow (point) feature class:
- Manually collate and add new development flows:
 - Locate point matching development address
 - Add residential and commercial units
 - Calculate flows
 - Determine key dates (constructed, occupied)
 - Determine if development is included in CDR flow projection

Tool outputs:
- Development Specs – point feature class
Tool Development

Tool 2A: Base Flow Importing

- **Tool inputs:**
 - Hydraulic model results for existing and future

- **Processing steps:**
 - Create a new Base Flow feature class:
 - Feature type: Polygon (subcatchments)
 - Import model basins (subcatchments)
 - Run model for 2020, 2025, 2030, 2035 and 2040 peak wet flow scenarios
 - For each model run:
 - Export model result file (SHP format)
 - Import model results into Base Flow
 - For each Project Basin:
 - Calculate dry and wet-weather peaking factors

- **Tool outputs:**
 - Base Flows - polygon feature class
Tool Development

Tool 2B: Development Basin Allocator

- **Tool inputs:**
 - Development Specs feature class

- **Processing steps:**
 - Create a new Subcatchment ID column in Development Specs
 - For each development site:
 - Identify basin (subcatchment) polygon
 - Assign basin ID to development site

- **Tool outputs:**
 - Development Specs (with basin ID’s) – point feature class
Tool Development

Tool 2C: Project Specs

- **Tool inputs:**
 - Capital improvement list or master plan

- **Processing steps:**
 - Create a new Project Specs point feature class
 - Manually enter project spec data including:
 - Name and description
 - Project ID and model ID (link ID)
 - Type (pipe, pump or other)
 - Existing capacity
 - Design capacity
 - Calculate flow factors for each project:
 - Dry weather peaking factor = DW peak flow / average dry weather flow
 - Wet weather peaking factor = WW peak flow / average dry weather flow

- **Tool outputs:**
 - Project Specs – point feature class
Tool Development

Tool 2D: Project Basins

- **Tool inputs:**
 - Project basins defined from model network

- **Processing steps:**
 - Create a new Project Basins - polygon feature class
 - For each Project Site:
 - Manually select upstream basins draining to project site
 - For each basin, assign a flow factor (0 – 1) that represents how much flow contributes to the ‘project network’. Normally, flow factor = 1 unless basin is split due to flow diversions
 - Use model trace tool to define upstream network and associated basins

- **Tool outputs:**
 - Project Basins – polygon feature class
Tool Development
Tool 3: Flow Projection Update

• Tool inputs:
 • Base Flows, Development Flows, Project Specs and Project Basins

• Processing steps:
 • For each Project Site > Year > Basin:
 • Existing Base Flow = model base flow x flow factor
 • Total Development Flow = sum development flows per basin
 • Adjusted Base Flow = Existing Base Flow + Development Flow
 • For each Project Site > Year:
 • Total Adjusted Base Flow = Sum of Adjusted Base Flows
 • For each Project Site:
 • Dry Weather Peak Flow = Total Adjusted Base Flow x DW Peaking Factor
 • Wet Weather Peak Flow = Total Adjusted Base Flow x WW Peaking Factor

• Tool outputs:
 • Project Flows – contains adjusted flow projections
Tool Development
Model Building and GIS Analysis

- **ModelBuilder Approach**
 - Utilized existing InfoWorks model
 - Verified diversion settings

- **Population and Future Developments**
 - OCSD obtained and compiled development populations
 - Updated CDR 2040 projections

- **GIS Processing and ModelBuilder**
 - Applied model procedures
 - Procedures automate the modeling process
 - Utilized ArcGIS ModelBuilder to distribute populations
Tool Development

Tool 4: Capacity Analysis

- **Tool inputs:**
 - Project Specs and Adjusted Flow Projections

- **Processing steps:**
 - Add new columns to Adjusted Flow Projection feature class:
 - Updated Trigger Year
 - Updated Target Capacity
 - For each Project Site > Year:
 - Compare existing capacity with adjusted flow projections
 - Select projection year when flow exceeds capacity
 - Interpolate between 5-year projections to estimate trigger year
 - Compare 2040 adjusted flow projection with target (design) capacity
 - Update target capacity if adjusted 2040 flow exceeds current target capacity

- **Tool outputs:**
 - Capacity Analysis
Tool Development
ModelBuilder and Tool Demo

- OCSD Capacity Tracker
 - A. Development Tracking
 - A1 Development Specs
 - B. Data Management
 - B1 Base Flow Importer
 - B2 Development Allocator
 - C. Capacity Analysis
 - C1 Flow Projector
 - C2 Project Reviewer