Geometric Networks: An Introduction

Christopher Thomas
David Crawford
Expectations

Presumed knowledge of the Geodatabase

- Features classes
- Tables
- Subtypes
- Domains
- Attachments
- Editor tracking
- Relationship classes
Agenda

• What is the Geometric Network?
• When to use a Geometric Network
• Editing and analyzing
• Validating
• Programming and performance
• Deployment tips
• Future Plans
What is a Geometric Network?

• Why was it developed?
• The network you see in the map
• The logical network behind the scenes
• Features in a geometric network
What is a Geometric Network

Why was it developed?

• Motivation
 - Emerging competitive industry
 - Provide support for utilities and the natural resource sectors
What is a Geometric Network

The network you see in the map

• A way to model common networks and infrastructures found in the real world.

• Definition
 - A network of connected custom point and lines features in a map
 - Supported by a logical network that maintains connectivity relationships
 - Connectivity is based on geometric coincidence
 - Rules and custom features control how things connect
What is a Geometric Network
The logical network behind the scenes

- An index that maintains the connectivity relationships between edges and junctions
 - Geometrically coincident
 - Supporting rule

- Purpose
 - Make things faster

- Use
 - Accessible programmatically
 - Custom analytic tools
 - Maintains weights
What is a Geometric Network

Features in the network

• **Custom features**
 - Type defines how other features can connect to it
 - Store more than just information about that feature

• **Comparison**
 - Non-custom features - store information about that feature
 - Custom features - feature information + connected neighbor
What is a Geometric Network

Features in the network

• **Shape:** junction or edge

• **4 types**
 - Orphan junctions *system maintained*
 - User defined junctions
 - Complex edges
 - Simple edges
What is a Geometric Network

Features in the network

• Shape: junction or edge

• 4 types
 - Orphan junctions
 - User defined junctions
 - Complex edges = midspan connectivity
 - Simple edges
What is a Geometric Network

Features in the network

- Shape: junction or edge

- 4 types
 - Orphan junctions
 - User defined junctions
 - Complex edges
 - Simple edges = no midspan connectivity
What is a Geometric Network

Rules

- Tell the network what is allowed to be connected
- Restrict the number of features allowed to connect

- 2 types
 - Defined at the subtype level
 - Edge-junction
 - Edge-junction-edge

- Analyzed post-process
What is a Geometric Network

Rules

• Tell the network what is allowed to be connected
• Restrict the number of features allowed to connect

• 2 types
 - Defined at the subtype level
 - Edge-junction
 - Edge-junction-edge

• Analyzed post-process

3 lines can connect to the point
What is a Geometric Network

Rules

• Tell the network what is allowed to be connected
• Restrict the number of features allowed to connect

• 2 types
 - Defined at the subtype level
 - Edge-junction
 - Edge-junction-edge

• Analyzed post-process
What is a Geometric Network

Rules

- Tell the network what is allowed to be connected
- Restrict the number of features allowed to connect

- 2 types
 - Defined at the subtype level
 - Edge-junction
 - Edge-junction-edge

- Analyzed post-process
What is a Geometric Network

Rules

- Tell the network what is allowed to be connected
- Restrict the number of features allowed to connect

- 2 types
 - Defined at the subtype level
 - Edge-junction
 - Edge-junction-edge

- Analyzed post-process
What is a Geometric Network
When you should use a geometric network

- **Model utilities or natural resource systems**
 - Gas, electric, telecommunications, waste water
 - Rivers, stream, watersheds

- **Capabilities**
 - Control how things connect
 - Connectivity on the fly
 - Trace pathways in the network
 - Cost of travel through paths
Creating and Configuring
Demonstration
Editing and Analyzing

- The editing experience
- Editor tips and tricks
- Tracing your network
- Control the direction of flow
- Model the cost of travel
Editing
The editing experience

- Connectivity on the fly
 - Rubber banding
 - Move features logically

- Junction subsumption
 - Orphan junctions
 - Don’t store attributes
Editing
The editing experience

• Connectivity on the fly
 - Rubber banding
 - Move features logically

• Junction subsumption
 - Orphan junctions
 - Don’t store attributes
Editing
The editing experience

• Connectivity on the fly
 - Rubber banding
 - Move features logically

• Junction subsumption
 - Orphan junctions
 - Don’t store attributes
Editing
The editing experience

• Connectivity on the fly
 - Rubber banding
 - Move features logically

• Junction subsumption
 - Orphan junctions
 - Don’t store attributes

Reshape to stay connected
Editing
The editing experience

• Connectivity on the fly
 - Rubber banding
 - Move features logically

• Junction subsumption
 - Orphan junctions
 - Don’t store attributes
Editing
The editing experience

• Connectivity on the fly
 - Rubber banding
 - Move features logically

• Junction subsumption
 - Orphan junctions
 - Don’t store attributes
Editing
Editor tips and tricks

• Snapping
 - Ensure connectivity

• Feature Cache
 - Snapshot of geographic locations
 - Hot an ready x, y, z information
Analyzing

Tracing

• **Travel logical paths in the network**
 - Ensure connectivity
 - Find upstream/downstream features
 - Discover loops and paths

• **Trace components**
 - Flags
 - Barriers

• **Weights**
Analyzing
Tracing

• Travel logical paths in the network
 - Ensure *connectivity*
 - Find upstream/downstream features
 - Discover loops and paths

• Trace components
 - Flags
 - Barriers

• Weights
Analyzing

Tracing

• **Travel logical paths in the network**
 - Ensure connectivity
 - Find *upstream*/downstream features
 - Discover loops and paths

• **Trace components**
 - Flags
 - Barriers

• **Weights**
Analyzing

Tracing

- Travel logical paths in the network
 - Ensure connectivity
 - Find upstream/downstream features
 - Discover loops and paths

- Trace components
 - Flags
 - Barriers

- Weights
Analyzing
Tracing

• Travel logical paths in the network
 - Ensure connectivity
 - Find upstream/downstream features
 - Discover loops and paths

• Trace components
 - Flags
 - Barriers

• Weights
Analyzing Tracing

- Travel logical paths in the network
 - Ensure connectivity
 - Find upstream/downstream features
 - Discover loops and paths

- Trace components
 - Flags
 - Barriers

- Weights
Analyzing

Tracing

• Travel logical paths in the network
 - Ensure connectivity
 - Find upstream/downstream features
 - Discover loops and paths

• Trace components
 - Flags
 - Barriers

• Weights
Analyzing

Tracing

• Travel logical paths in the network
 - Ensure connectivity
 - Find upstream/downstream features
 - Discover loops and paths

• Trace components
 - Flags
 - Barriers

• Weights
Analyzing
Tracing: Flow direction

- **Direction of flow**
 - Travel a logical path
 - Easily visualized

- **Set direction**
 - Ancillary role - sources and sinks
 - Digitized direction
Analyzing
Tracing: Flow direction

- **Direction of flow**
 - Travel a logical path
 - Easily visualized

- **Set direction**
 - Ancillary role - *sources* and sinks
 - Digitized direction
Analyzing
Tracing: Flow direction

- **Direction of flow**
 - Travel a logical path
 - Easily visualized

- **Set direction**
 - Ancillary role - sources and sinks
 - Digitized direction

![Diagram showing flow direction with points 1, 2, and 3 leading to a sink]
Analyzing
Tracing: Flow direction

- **Direction of flow**
 - Travel a logical path
 - Easily visualized

- **Set direction**
 - Ancillary role - *sources and sinks*
 - Digitized direction
Analyzing
Tracing: Flow direction

• **Direction of flow**
 - Travel a logical path
 - Easily visualized

• **Set direction**
 - Ancillary role - sources and sinks
 - **Digitized direction**
Analyzing Tracing: Weights

- **Cost of travel**
 - Consider feature attribution
 - Assigned to weights in the index

- **Uses**
 - Least-cost analysis
 - Accumulation trace

- **3 Types**
 - Double, integer, and bitgate
Analyzing Tracing: Weights

- **Cost of travel**
 - Consider feature attribution
 - Assigned to weights in the index

- **Uses**
 - Least-cost analysis
 - Accumulation trace

- **3 Types**
 - Double, integer, and bitgate
Editing and Tracing Demonstration
Validation and Performance

- Confirm network correctness
- Validation commands and tools
- Programming and the API
- Cache in on performance
Validation
Confirm network correctness

• Rubber banding
 - On the fly connectivity

• Validation commands and tools
 - Checks rules against the network
 - Batch process with GP tools

• Analytics
 - Find connected trace
Validation
Confirm network correctness

- Rubber banding
 - On the fly connectivity

- Validation commands and tools
 - Checks rules against the network
 - Batch process with GP tools

- Analytics
 - Find connected trace
Validation
Command tools

• Verify Connectivity
 - Compares the map with the index

• Repair Connectivity
 - Fixes connectivity
 - Map and index match

• Rebuild Connectivity
 - Rebuilds connectivity
Validation
Geoprocessing tools

• Verify and Repair Connectivity
 - Operate exactly as the tools on the toolbar
 - Can be scripted

• Rebuild Network
 - Drops and recreates an entire versioned Geometric Network
 - Not undoable and can be time consuming

• Batch process
Programing

The API

• Author your own analytic tools
 - Through the ArcObjects API

• Use the logical network
 - Cached information
 - Increased performance
Performance

Working with the network

• Editing
 - Connectivity is maintained on the fly
 - Feature cache

• Data configuration / modeling
 - Make use of subtypes
 - Use optimal structure for your needs
 - Use test environment for development (prototype)

• In a versioned editing environment…
 - Manage your version tree (reconcile, post, compress)
 - Keep your indexes and statistics up to date (rebuild indexes, analyze datasets)
Validation

Demonstration
Deployment and Future Plans

• Preparing your data for a GN
• Understanding the quality of your data
• What you should do today
• What’s coming…
Deployment
Preparing your data

- **Digitized direction**
 - Flow direction consideration

- **Use a topology for cleanup**
 - Geographical assessment

- **Data quality**
 - Understand level
 - Snapping tolerance
Deployment

Preparing your data

• **Script your setup**
 - Archive of rules

• **Prototype**
 - Early and often
 - Performance testing
Deployment

What you should do today if you are using the geometric network model

• Move to or stay on ArcGIS Desktop version 10.2.1

• This is where we prioritize bug fixes through Utility Update patches

• UTU patch 7 is the current release with UTU patch 8 in the works.
Future plans

New framework: Utility Network

• Model complexities and details in network

• Services based architecture
 - Seamless experience across the platform

• Projected release
 - ArcGIS Pro 2.1 and ArcGIS Enterprise 10.6 release