Raster Analytics in Image Server: An Introduction

Mike Muller
Introduction and Context

The ArcGIS Platform and ArcGIS Image Server
manage and process imagery into authoritative data sources that are appropriately and efficiently disseminated to those that need access

enable access to imagery and analysis through a wide range of integrated desktop, mobile, and web applications that are interactive, informative, and engaging

manage and process imagery into authoritative data sources that are appropriately and efficiently disseminated to those that need access

derive actionable information from imagery and rasters by performing analytics on massive volumes of data available from multiple sources

Any device, anywhere

Content from all sources

SYSTEM OF ENGAGEMENT

SYSTEM OF INSIGHT

SYSTEM OF RECORD
ArcGIS Image Server 10.5

Image Server
- fast on-the-fly dynamic processing
- caching and serving tiled maps
- scalable raster analysis and image processing
- serve and analyze scientific data
- OGC services
- multidimensional analysis
- weather & climate
- NetCDF
- HDF
- GRIB
- multidimensional
- WCS
- KML
- WMS
- WCS
- KML
- WMS

Powerful Desktop Apps
- custom algorithms with Python
- spectral processing
- terrain analysis
- vegetation analysis
- persistent product generation
- burn geographic features and text into tiles
- watermarking
- update AOIs
- scale tile creation with additional servers
- design multi-source, multi-LOD tiled services
- orthorectification and mosaicking
- only process what’s being looked at
- 100+ analytic functions
- reduce storage costs
- store once, many products on-the-fly
- compression control for low bandwidths

Web Apps
- Web Maps (reports)
- Story Maps (reports)

Mobile Apps & Devices
- compression control for low bandwidths

Web Apps
- Developer Apps

Production Systems (automation)
- new compression control for low bandwidths
- orthorectification and mosaicking
- only process what’s being looked at
- 100+ analytic functions
- reduce storage costs
- store once, many products on-the-fly
- compression control for low bandwidths
What is Raster Analytics?

- *ArcGIS has a new way to create and execute spatial analysis models and image processing chains which leverage distributed storage and analytics*

 - Raster Analytics works with your existing GIS data and imagery
 - register your data and go, importing existing data to distributed storage is not mandatory

 - Raster Analytics can optimize your data for distributed analytics
 - import your data into ArcGIS distributed storage which further improves the scalability of distributed analytics

 - Raster Analytics is designed to scale with your organization’s demands
 - scale up to get the job done, scale down when resources are no longer needed
Raster Analytics Foundational Concepts

- Raster Analytics adds to existing ArcGIS foundational concepts

- Dynamic Raster Models
 - on-the-fly processing

- Geoprocessing Models
 - powerful analytics

- Server-based Distributed Raster Analytics with Distributed Raster Data Storage
 - (persistent) distributed analytics with optional distributed storage for even greater scalability

- Web GIS Layers
 - Portal
 - rich geoinformation model

more
more
new
extends
Solve New Problems with Raster Analytics

- Run models against data that is too big for single desktop
 - small and medium scale global rasters (big geography)
 - large scale local or regional rasters (high resolution)
- Run models against massive collections and scale it
- Run models and meet time constraints
Raster Analytics is Powerful

- run a model based on a single function

<table>
<thead>
<tr>
<th>Math</th>
<th>Square</th>
<th>Square Root</th>
<th>Not Equal</th>
<th>ArgStatistics</th>
<th>Cell Statistics</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>Times</td>
<td>Bitwise And</td>
<td>Bitwise Left</td>
<td>ACos</td>
<td>ACosH</td>
<td>ASin</td>
</tr>
<tr>
<td>Abs</td>
<td>Times</td>
<td>Bitwise And</td>
<td>Bitwise Left</td>
<td>ACos</td>
<td>ACosH</td>
<td>ASin</td>
</tr>
</tbody>
</table>

- run a model by combining many functions

<table>
<thead>
<tr>
<th>Correction</th>
<th>Apparent Reflectance</th>
<th>Geometric Correction</th>
<th>Speckle Filtering (Lee,Frost,Kuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualization & Appearance</td>
<td>Contrast and Brightness</td>
<td>Convolution</td>
<td>Pan sharpening</td>
</tr>
<tr>
<td>Analysis: Density</td>
<td>Kernel Density</td>
<td>NDVI / NDVI Colorized</td>
<td>SAVI / MSAVI / TSAVI</td>
</tr>
<tr>
<td>Analysis: Overlay</td>
<td>Weighted Sum</td>
<td>Weighted Overlay</td>
<td></td>
</tr>
<tr>
<td>Analysis: Zonal</td>
<td>Zonal Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis: Band Math & Indices</td>
<td>NDVI / NDVI Colorized</td>
<td>SAVI / MSAVI / TSAVI</td>
<td>GEMI</td>
</tr>
<tr>
<td>Python</td>
<td>Custom Algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Management & Conversion</th>
<th>Raster to Vector</th>
<th>Vector to Raster</th>
<th>Color map</th>
<th>Color map To RGB</th>
<th>Complex</th>
<th>Grayscale</th>
<th>Remap / Reclass</th>
<th>Spectral Conversion</th>
<th>Unit Conversion</th>
<th>Vector Field</th>
<th>LAS to Raster</th>
<th>LAS Dataset to Raster</th>
<th>Clip</th>
<th>Composite</th>
<th>Extract Bands</th>
<th>Mask</th>
<th>Mosaic Rasters</th>
<th>Rasterize Features</th>
<th>Reproject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolation</td>
<td>Natural Neighbor</td>
<td>Nearest Neighbor</td>
<td>Inverse Distance Weighted</td>
<td>Empirical Bayesian Kriging</td>
<td>Swath</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Generation & Analysis</th>
<th>Aspect</th>
<th>Curvature</th>
<th>Elevation Void Fill</th>
<th>Hillshade</th>
<th>Shaded Relief</th>
<th>Slope</th>
<th>Viewshed</th>
</tr>
</thead>
</table>

Conditionals

- Con
- Set Null
Raster Analytics is Easy

- easy to get started, it is “out of the box analytics”
 - install on nodes -> start Raster Analytic services -> go

- ArcGIS Pro user experience
 - just works with layers
 - visual modeler to design simple and complex models

- results are immediately available as services
 - no publishing workflow required
Raster Analytics and Your Data

- **using your own registered data**
 - registered data can be used as input but not output
 - models running against single rasters can be parallelized by block (*as long as the model allows it*)
 - models running against a collection of rasters will be parallelized per raster in the collection
 - performance can be susceptible to underlying image format (TIFF vs. JP2)

- **using ArcGIS distributed storage**
 - easy to use import tool gets your data into Raster Analytics optimized storage
 - CRF (Cloud Raster Format)
 - multi-band, block based, multiple readers, multiple writers, fast
 - CRF is a format optimized for Raster Analytics computations

- **all outputs of Raster Analytics are written in parallel to ArcGIS distributed storage**
 - running models on new Web GIS layers is inherently optimized
Raster Analytics in Your Infrastructure

- **deployed as Enterprise GIS on-premise**

- **your infrastructure can be…**
 - your hardware
 - your Amazon
 - your Azure

- **deployment tools**
 - Amazon CloudFormation Templates
 - ArcGIS Enterprise Cloud Builder for Microsoft Azure
Raster Analytics can power systems that need to execute spatial analysis and image processing models in a distributed and scalable environment. It is designed for users, developers, and system integrators.

Results are stored in distributed storage and are immediately available as new Web GIS Layers which are already optimized for further analytics.
Raster Analytics Test Cases
Benefits of a Distributed Processing System
Raster Analytics Test Case: Terrain Suitability

- **esri virtual machine**
 - 16GB RAM, 8 cores, NAS storage

Terrain Suitability Model:
- Compute slope
- Compute aspect
- Remap
- Overlay

Global SRTM 90m

Results:
- **13.12 hours**: global terrain suitability raster
- **80 minutes**: terrain suitability model

Graph:
- Raster Analytics Processors
- 16 nodes
- 425 minutes
- 262 minutes
- 128 minutes
- 80 minutes
Enterprise GIS (Image Server cluster) on Amazon
- 8 c3.2xlarge instances (8 vCPUs, 16GB RAM)

Raster Analytics Test Case: Solar Power Plant Suitability

Mean Rainfall

Mean Temperature

Elevation

Landcover

suitability model

30m National Solar Plant Suitability Raster

5 hours 45 minutes

ArcGIS Pro

9 minutes

Raster Analytics
Raster Analytics Test Case: Landsat Processing

Infrastructure
- ArcGIS Enterprise GIS on AWS

Input Collection
- Landsat GLS 1990
 - 7422 Multispectral Scenes
 - S3 storage

Processing
1. (foreach) input scene
2. mask no data
3. top of atmosphere correction
4. modified soil adjusted vegetation index
5. remap to classes
6. output thematic raster

Output
- Thematic Rasters
 - 7422 Thematic Rasters
 - Distributed Raster Datastore

Duration
- 2 hours 48 minutes
- 44 scenes per minute
- ¾ scene per second

Cluster Details
- Single node
- AWS c3.8xlarge
- 60GB RAM, 32 cores, 500GB SSD
- 200 Raster Analytics Processors
Comparing Previous Versions

<= ArcGIS 10.4
ArcGIS 10.4 Raster Analytics and Image Processing

- ArcGIS 10.4 has scalable high performance analysis of big rasters and imagery for visual analytics
- On-the-fly processing of massive images and massive image collections
- Desktop and server
- Visual results can be exported

Dynamic Raster Models

Mosaic Datasets ➞ Image Services

Raster Functions

Mosaic Datasets
- Can be run on the desktop

Image Services
- Can be run on the server

Published
ArcGIS 10.4 Raster Analytics and Image Processing

- ArcGIS 10.4 has scalable high performance analysis of standard rasters and imagery for persistent analytics
- processing of single images or spatial subsets of massive images or mosaicks
- desktop and server
- persistent results

Geoprocessing Models

Geoprocessing Tools
What differentiates Raster Analytics from ArcGIS 10.4?

• Raster Analytics are “out of the box” and “ready to use” within your ArcGIS system
 - today you have to explicitly author and publish the specific analytics you need
 - faster prototyping and R&D

• Raster Analytics gives you tools and operations that work against existing layers and future layers within your ArcGIS system – built for Enterprise GIS

• Raster Analytics helps you get “big jobs” done faster
 - you don’t have to partition the job yourself – built for big jobs, big data
 - elasticity and scalability that doesn’t come with desktop workflows

• Raster Analytics is for massive collection processing with persistent results
 - product generation, automated production systems (TCPED)
 - for systems that can’t rely on visual analytics and on-the-fly product generation
Please Take Our Survey on the Esri Events App!

Download the Esri Events app and find your event

Select the session you attended

Scroll down to find the survey

Complete Answers and Select “Submit”