Working with Historical Imagery

Peter Becker
Historic Aerial Imagery - Objectives

• Manage & Share Collections of Historic Aerial Imagery

• View & use best imagery
 - By geography
 - By date, other attributes

• Geometric and Radiometric accuracy requirements vary

• Initial product:
 - Mosaic Dataset or Image Service
 - Approximate Georeferencing
 - Accuracy may be improved over time.

• Value:
 - Understand past
 - Legal ownership
 - Environmental reporting
 - Water rights
 - Property Boundaries
 - Finding UXO (Europe WWII)
Using Historical Imagery

Sample Data Provided by: geoDyn
Historic Aerial Imagery - Sources

• Film imagery from archives
 - Rolls of aerial film (typically 24 cm), Cut films, Contact Prints
 - Panchromatic, True Color, Color IR
 - 1930’s – 2000’s

• Large collections exist

• Being Scanned
Scanning

• Typically scanned by
 - Photogrammetric scanner
 - Table top scanner

• Scan at about 20 microns / 1200 ppi
 - Higher resolution rarely needed

• Record scan direction →

• Optimize Format and Compression
 - TIF with JPEG_YCbCr compression (Q80 ~ 7x)
 - Tiled with pyramids
 - Use OptimizeRasters on GitHub (https://github.com/Esri/OptimizeRasters)

• No need to generate statistics
Metadata

• Georeferencing
 - None - Needs Manual Georeferencing
 - Poor - Index Map Needs to be digitized
 - Good - Digital Index from navigation data (> 1990)
 - Excellent - Output from AT

• Film Metadata
 - Date (s)
 - Camera Type (Optional)
 - Camera Calibration (Optional)
 - Run Numbers (Optional)

• DTM - Digital Terrain Model
 - Suitable may exist - Export from World Elevation on ArcGIS Online
 - Else need advanced workflow (see later)
Workflow Options

• Basic
 - Manually Georeference
 - If a small number of images in flat areas

• Standard
 - Obtain/Create PhotoIndex
 - Create Mosaic Dataset using workflow

• Advanced
 - Perform Aerial Triangulation
 - For Large Numbers of Images
Basic Workflows

- Set TIF images to ReadOnly
- Georeference individual frames using Georeferencing tool
 - Try Approx and then Auto Georeference to World Imagery (or other base)
 - Else manually measure tie points using imagery base map
 - Typically 6 spread out are sufficient
 - Use Projective Transform
 - Use “Save”, Do NOT use “Save As”
 - This results in set of georeferenced images with no sampling applied
- Optional
 - Create Mosaic
 - Create Tile Cache
 - Publish to ArcGIS Online
Standard Workflow

- **Create Mosaic Dataset - Recommend to use ArcGIS Pro 2.0**
 - Using best available georeferencing
 - Use one of following
 - Imagery created in Basic Workflow
 - Frame Camera Raster type if orientation available (eg if Aerial Triangulation already exists)
 - Use Historical_Imagery_GP_Tools if photoindex available (See next slide on creating digital photo index)

- **Optionally**
 - Publish as an Image Service
 - Refine geometry
 - Refine footprints
 - Refine color correction
 - Generate seamlines
 - Generate Overview
 - Create Tile Cache and publish to ArcGIS Online (or your portal)
 - Create Derived Mosaic Dataset that Combines all
Creating Digital PhotoIndex

• From Photo Index or Print Laydown
 - Digitize locations and frame numbers by run & film number
 - Build feature class $\rightarrow (x,y)$ point for approximate photo center
 - “How??” will depend on your data. Easiest method typically to:
 - Scan & georeference the Photo Index/Print Laydown
 - Manually create points for photo centers
 - Populate “Key Historic Imagery Parameters” Table (next slide)

• Create Film Report
 - Include other metadata about the flight - date, type of film, etc.
Build “Key Historic Imagery Parameters” Table

Approximate X,Y (Geometry)

COG (course over ground) - this will be calculated

‘Raster’ field: path and file name to each scanned file

PhotoScaleF - Scale factor e.g. 5000 for 1:5000

FocalLength - In microns; e.g. 152400 for 6 inch

ScanDirection - per previous diagram

ScanResolution - in microns. If not known, can be estimated as 240000/Min(Cols,Rows)

FrameSize - in microns e.g. 180000 for 18cm. If undefined then assumed to be 23cm

Frame - As a 4 digit string, e.g. 0023 (not stored as an integer)

Run - As a string

Film - As a string

Cols,Rows - Number of Cols and Rows of the image. Will be obtained from Image if not defined

OffsetC, OffsetR - in microns. This is the offset of the camera center from the center of the scan. If undefined then assumed to be 0

Other parameters optional - from Film Report
 e.g. AcquisitionDate, ScanDate, ScannerModel, FilmType, etc.
Using Historical_Imagery_GP_Tools

- Geoprocessing Tools “Historical Imagery.pyt” available for download
- Get from esriurl.com/imageryworkflows, ImageManagement
- http://www.arcgis.com/home/item.html?id=d1b4e3afeda7405fb34578207f0ad256

- Will build table(s) required as input to the Frame Camera Raster Type
 - *Frame Table and Camera Table* corresponding to Exterior orientation and Interior orientation
 - Can be separate geodatabase tables, or combined into one.

See in ArcGIS Help System:
- http://esriurl.com/FrameSchema
- http://esriurl.com/CameraSchema
Using Historical_Imagery_GP_Tools (2)

- **Run EstimateCOG → Input KHIP table**
 - This populates COG field

- **Run Check Estimate Orientation Parameters**
 - This verifies required *schema* is populated before beginning a lengthy run.

- **Run Estimate Orientation Parameters**
 - This builds single Frame & Camera Table required as input to *Frame Camera Raster Type* (workflow step 4)
Using Historical_Imagery_GP_Tools (3) Create Mosaic Dataset

- Use *Frame Camera* Raster Type
 - Input Frame+Camera table as input
- Measure amount of shrink to reduce footprints
- Shrink footprints using Calculate footprints by Geometry
- Set Mosaic Method = Closest to Center
- Create Overviews
(Workflow step 5 - optional) Block adjustment in ArcPro

- Calculate tie points between images
- Input ground control points
- Adjust with 1st Order Transform (Frame camera requires Desktop Advanced)
Advanced Workflow

• Create Frame Table as per Standard Workflow

• Use OrthoMapping
 - Block Adjustment
 - GPS AccuracyLow
 - DTM Generation

• Optionally (similar to standard)
 - Publish as an Image Service
 - Refine color correction *
 - Generate seamlines *
 - Generate Orthophotos *
 - Create Tile Cache and publish to ArcGIS Online (or your portal)
 - Create Derived Mosaic Dataset that Combines all

* Part of OrthoMapping workflow
Publishing

• As Image Services
 - Highest Image Quality (No data loss)
 - Provide Metadata
 - Access to All Overlapping data
 - Clip to Footprints

• As Raster Tile Cache (Provides Static Backdrop)
 - Generate in Desktop or Server
 - Publish through Server or to ArcGIS Online
For More Details: www.esriurl.com/imageryworkflows

ArcGIS Imagery Workflows
Tools and best practices to help you manage, analyze, and use your imagery and rasters

Manage Imagery