ArcGIS Pro: Working with Temporal Data

Nathan Shephard
Stephen Heidelberg
Types of Temporal Data

Moving Features
- Airplanes, boats, vehicles
- People, animals
- Storm centers

Discrete Events
- Crimes
- Accidents
- Earthquakes, lightning strikes, volcanic events

Stationary Recorders
- Weather stations
- Traffic sensors
- Stream gauges

Change & Growth
- Demographics
- Fire perimeters
- Flood extents
- Country Boundaries
The nature of temporal data

• Conceptualizations of time can vary
 - **Linear** (directional)
 - Each moment is unique, time moves forward
 - Eg: Purchase of a home
 - **Cyclic** (repeating)
 - Moments are repeated, time loops back around
 - Eg: Daily feeding schedule at a zoo

• ArcGIS assumes that time is **linear**

The nature of temporal data

- Time is relative to something
 - **Clock-driven time**
 - “On Jan 10th, 1990, at 11.00am, …” (Gregorian Calendar, UTC)
 - Hourly water temperatures
 - Crime occurrences
 - **Event-driven time**
 - “At T-minus 10 minutes, …”
 - Days since a specific earthquake
 - Planning / conducting a military exercise
 - **State-driven time**
 - “2 seconds after the vehicle stops, …”
 - Automated factory scheduling
 - Melting of ice sheets

The nature of temporal data

- **Temporal data can be:**
 - **A moment**
 - Information is captured / defined for a specific point in time
 - Described as a single time-value
 - Eg: *The exam starts at 9.00am*
 - **A duration**
 - Information is captured / defined for an interval of time
 - Can be described as either \([\text{start-time} + \text{length-of-time}]\) or \([\text{start time} + \text{end-time}]\)
 - ArcGIS Pro requires the latter storage format
 - Eg: *The exam lasts for 90 minutes*; or *The exam ends at 10.30am*
The nature of temporal data

• The frequency of data collection can be:
 - **Regular**
 - Data values are collected at a constant rate
 - Eg: Hourly GPS positions from a vehicle tracker
 - Eg: A 10-year census
 - **Irregular**
 - Data values are collected on indeterminate events, or whenever required
 - Eg: The occurrence of crimes
 - Eg: Changes in political boundaries

GIS integrates temporal data

- ArcGIS integrates time across the platform
 - ArcGIS for Desktop
 - ArcGIS Pro
 - ArcGIS Portal
 - ArcGIS Online
 - ...

- ArcGIS can be used to:
 - Manage
 - Visualize
 - Analyze
 - Share

Temporal data sources:
- Fixed time
- Stationary
- Mobile
- Real-time sensor network
- Analysis, simulation, & modeling
A quick note

This session covers:
 - Structuring…
 - Visualizing…
 - Sharing…

...Temporal Data in ArcGIS Pro

• Not:
 - Analyzing, Editing, Generating Space-Time Cubes, …
Structuring temporal data
Supported data storage types

• **Data that can be presented as tabular rows**
 - Feature layers
 - Mosaic datasets
 - NetCDF layers
 - Tables
 - Raster catalogs
 - Tracking layers / Stream layers
 - Network dataset layers with traffic data

• **Plus service layers with historical content and updating data feeds**
Storing temporal values – best practice

Store time values in a date field
- A field type that stores dates, times, or dates-and-times
- Supports more sophisticated database queries
- Easiest to configure on the layer
- *Note: we will cover using ‘Range’ (numbers) for time values later*

Store temporal data in row format
- Pro filters tabular content by rows
- Each time-aware data entry should be a single record/row

Index the date field
- Interactively filtering rows means many database queries

Consider storing date values in UTC or GMT
- If your data covers multiple time zones, ‘10am’ becomes unreliable
When data comes from across multiple time zones…?

- Pro does integrate, and allow for, data across different time zones
 - The *map* has a time zone (values shown on the Time Slider)
 - A *layer* has a time zone, and all values must be for the *same time zone*
- **Ensure all values in the layer are in the same time zone**
 - Use the Convert Time Zone GP tool, as needed
 - Adjusts the rows’ time values (in a date field) from one time zone to another

- **Tip: Convert to standard time (UTC\(^1\) or GMT\(^2\))**
 - Avoid issues with daylight savings time

\(^1\) Coordinated Universal Time
\(^2\) Greenwich Mean Time
When temporal values are not in Date format…?

- **Convert values into a date field type**
 - Use the Convert Time Field GP tool
 - Converts Text/Number fields into a new Date field
 - “July 09, 2016” ⇒ 07/09/2016 ⇒ MM/DD/YYYY
 - You can define a custom text format, if needed

- **The tool allows other time conversions**
When temporal values are stored across multiple columns…?

- **Expand the data into one time-stamp per row**
 - Use the **Transpose Fields** GP tool
 - Shifts data stored in columns into individual rows
 - Geometry shapes are duplicated
 - Choose which other fields are brought across

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>539</td>
<td>708</td>
<td>707</td>
</tr>
<tr>
<td>Alaska</td>
<td>180</td>
<td>215</td>
<td>274</td>
</tr>
<tr>
<td>Arizona</td>
<td>109</td>
<td>115</td>
<td>117</td>
</tr>
<tr>
<td>Arkansas</td>
<td>101</td>
<td>113</td>
<td>138</td>
</tr>
<tr>
<td>California</td>
<td>20</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Colorado</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connecticut</td>
<td>106</td>
<td>105</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATE_NAME</th>
<th>DateField</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Y1980</td>
<td>539</td>
</tr>
<tr>
<td>Alaska</td>
<td>Y1980</td>
<td>180</td>
</tr>
<tr>
<td>Arizona</td>
<td>Y1980</td>
<td>109</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Y1980</td>
<td>101</td>
</tr>
<tr>
<td>California</td>
<td>Y1980</td>
<td>20</td>
</tr>
<tr>
<td>Colorado</td>
<td>Y1981</td>
<td>106</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Y1981</td>
<td>706</td>
</tr>
<tr>
<td>Alabama</td>
<td>Y1981</td>
<td>215</td>
</tr>
<tr>
<td>Alaska</td>
<td>Y1981</td>
<td>115</td>
</tr>
<tr>
<td>Arizona</td>
<td>Y1981</td>
<td>113</td>
</tr>
</tbody>
</table>
When you need durations between events…?

- **Pull the next row’s time-value into the current row**
 - Use the **Calculate End Time** GP tool
 - Populates an end time field with the next record’s start time
 - The last record duplicates its start and end times

Result

<table>
<thead>
<tr>
<th>Start_Time</th>
<th>End_Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5/2010 6:00:00 AM</td>
<td>1/6/2010 1:00:00 PM</td>
</tr>
<tr>
<td>1/6/2010 1:00:00 PM</td>
<td>1/7/2010 4:00:00 PM</td>
</tr>
<tr>
<td>1/7/2010 4:00:00 PM</td>
<td>1/8/2010 11:00:00 AM</td>
</tr>
<tr>
<td>1/8/2010 11:00:00 AM</td>
<td>1/10/2010 2:00:00 PM</td>
</tr>
<tr>
<td>1/10/2010 2:00:00 PM</td>
<td>1/10/2010 2:00:00 PM</td>
</tr>
</tbody>
</table>
Modeling data... as separate rows (best general interaction)

- Each row contains all feature values, regardless of which ones change
 - Pros: anything can change per row (including shape), simple to configure, one table
 - Cons: potential for significant duplicated content

- Well-suited for:
 - Moving objects, like vehicle tracking
 - Changing polygonal areas, like fires boundaries

<table>
<thead>
<tr>
<th>OBJECTID</th>
<th>Shape*</th>
<th>Name</th>
<th>State_Name</th>
<th>POP</th>
<th>DATE_ST</th>
<th>DATE_END</th>
<th>Shape_Length</th>
<th>Shape_Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2698</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>33400</td>
<td>01/01/1900</td>
<td>01/01/1910</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>5944</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>34804</td>
<td>01/01/1910</td>
<td>01/01/1920</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>8975</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>27139</td>
<td>01/01/1920</td>
<td>01/01/1930</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>12185</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>23323</td>
<td>01/01/1930</td>
<td>01/01/1940</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>15135</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>22931</td>
<td>01/01/1940</td>
<td>01/01/1950</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>18243</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>22456</td>
<td>01/01/1950</td>
<td>01/01/1960</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>21371</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>21417</td>
<td>01/01/1960</td>
<td>01/01/1970</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
<tr>
<td>24464</td>
<td>Polygon</td>
<td>Abbeville</td>
<td>South Carolina</td>
<td>20112</td>
<td>01/01/1970</td>
<td>01/01/1980</td>
<td>162402.504779</td>
<td>1339524251.7354</td>
</tr>
</tbody>
</table>
Modeling data... using a joined table (optimal database method)

- A primary table, with a one-to-many join to a time-centric data table
 - Pros: optimized data storage, decide which values update, not hard to configure
 - Cons: multiple tables, slower general performance

- Well-suited for:
 - Stationary objects, like stream-gauge monitoring devices
 - Mostly-static polygonal areas, like parcels to a tax assessment table
Modeling temporal data... using Range (for numeric values)

- Same rules as previous, but values are stored as numbers (instead of dates)
- Can save needless conversion to Date format
- Well-suited for:
 - Event-driven sequential data, like “contamination levels each hour after the spill”
 - Huge time extents, like “tectonic plate movement across 100 million years”
 - “Stop-motion” style animation
 (using interpolated positions)
Visualizing temporal data
Visualizing temporal data in ArcGIS Pro – two steps

1. Configure time data properties for each layer
 - Specify which field/s drive time
 - Set the layer’s full time extent
 - Indicate a refresh rate for live feed data
 - Set the time zone

2. Set the current time extent for the map
 - The map has a well-defined temporal extent (and timezone)
 - Use the interactive slider to change the map time
 - Use the time step for regularly-captured time data

The time slider automatically appears with time-enabled layers (and range)
Demo

Temporal data in ArcGIS Pro
- Import MXD workflow
- Configuration of the time slider
- Using Range instead of Time
Modeling data in Mosaic Datasets

- Mosaic datasets are like a table of raster images
 - The table can contain date field/s
 - Common in long-term aerial imagery capture
 - Also common for storing analysis results through time
- They act just like feature data stored as separate rows
- Open the Mosaic dataset table from the Footprint layer
Modeling data from NetCDF layers

- NetCDF is a file format for spatio-temporal data
 - Contains multiple dimensions (x, y, z, t)
 - Often has many variables (temp, pressure, salinity, …)

- Time values are (often) available as a dimension

- Author the NetCDF Layers to include the time dimension
 - You can author feature or raster layers from NetCDF

- They act just like feature data stored as separate rows
Demo
NetCDF Data
Sharing temporal data
A variety of ways to share temporal visualizations

- **As a time-enabled web map**
 - TIP: Publish time-aware web maps from Pro (instead of per-layer in 10.x)
 - Open Pro, import an mxd, and publish the web map directly
 - *Extra tip:* Replace the basemap (to avoid group layers)
- **As time-enabled image services** (Portal only)
- **As an animation / video**
- **As a series of exported images**
- **As a temporal map book**
- **As “small multiples” on a single layout**
- **As map or layer packages**
Create web map services

- Map services preserve the time information from time-enabled layers
 - Used to query and display content (with the time slider)

- Example temporal web maps:
 - Atlantic Storms (1993-95)
 - Imported an MXD, updated the basemap, publish
 - One year of ice pack imagery (North Pole)
 - Time-aware aerial imagery
Demo

Time-aware web maps

Using Z for time (space-time cube)

Authoring Temporal Animations
- Introduction to keyframing
Demo

Authoring Temporal Animations
- Telling a GIS story
- Using time and range
- Adding information & overlays
- Using dynamic text elements
Please Take Our Survey on the App

Download the Esri Events app and find your event.

Select the session you attended.

Scroll down to find the feedback section.

Complete answers and select “Submit.”
Questions???

nshephard@esri.com
 • @NathanCShephard

sheidelberg@esri.com
 • @SteveHeidelberg