Data Science Made Easy in ArcGIS Using Python and R

Mark Janikas and Marjean Pobuda
mjanikas@esri.com; mpobuda@esri.com
Data Science
From Core to Community

- Techniques and methodologies continue to develop
 - Across disciplines
 - Subject to an ever-increasing amount of data
- Core analytics in ArcGIS
 - Maximize performance and utility
 - E.g. Spatial Statistics, Geostatistics, Spatial Analyst
 - E.g. GeoAnalytics, Insights, ArcGIS Python SDK
- Community is vast and evolving
 - Broad and specific
 - Techniques can come to market quickly
 - ArcGIS extends directly via scripting APIs
 - E.g. Python, R, Java
Data Science Community

Python

• Numeric/Scientific Python Modules
 - +60 Modules Listed
 - E.g. Life sciences, visualization, mathematics, GIS

• Python as a glue language
 - E.g. C++, Java, R, Hadoop/Spark, NetCDF/HDF-5

• Conda
 - Pro 1.3+

• 10x (pip)
 - Unofficial Windows Binaries for Python Extensions – Christoph Gohlke, UC Irvine
Data Science Community

- Well over 12,000 packages to enhance core
- Most widely used statistical software in the world
- Diverse and powerful
 - Universities, Government, Industry
 - Finance, Ecology, Statistics
 - Machine learning, predictive analytics
Battle of Bands

Which one is best?

• KD nuggets (2015)
 - Pros and Cons
 - R has a broader set of modules specific to a variety of methodologies
 - Python is a more fully functional programming language

• A ton to consider

• ArcGIS has you covered
 - PySAL – ArcGIS Toolbox
 - https://github.com/Esri/PySAL-ArcGIS-Toolbox
 - R Sample Toolbox
 - https://github.com/R-ArcGIS/r-sample-tools
 - Microsoft Data Science VM
Integration

GUI Interface

Tool Properties: Automatic Model Search

<table>
<thead>
<tr>
<th>General</th>
<th>Name</th>
<th>autoModel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Label</td>
<td>Automatic Model Search</td>
</tr>
<tr>
<td>Validation</td>
<td>Script File</td>
<td>C:\git\PySAL-ArcGIS-Toolbox\Scripts\AutoModel.py</td>
</tr>
</tbody>
</table>

Tool Properties: Semiparametric Regression

<table>
<thead>
<tr>
<th>General</th>
<th>Name</th>
<th>SemiparametricRegression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Label</td>
<td>Semiparametric Regression</td>
</tr>
<tr>
<td>Validation</td>
<td>Script File</td>
<td>C:\git\r-sample-tools\scripts\semi_par_regression.R</td>
</tr>
</tbody>
</table>
Integration

Simple API for reading data

```python
In [ ]:  #### Loading dataset ####
ssdo = SSDO.SSDataObject(inputFC)
#### Create DataFrame ####
ssdo.obtainData('MYID', ['GROWTH', 'PCR1970', 'POPDEN70', 'PERCNOHS'])
df = ssdo.getDataFrame()
print(df.head())
```

```r
In [ ]:  #### Loading dataset ####
info <- arc.open(inputFC)
#### Create Data.Frame ####
df <- arc.select(info, c('MYID', 'GROWTH', 'PCR1970', 'POPDEN70', 'PERCNOHS'))
head(df)
```
Integration

Simple API for writing data

```python
In [ ]: outDict = {}
    outField = SSDO.CandidateField('STDNORM', 'DOUBLE', outArray, alias = 'Standard Normal')
    outDict[outField.name] = outField
    ssdo.output2NewFC(outputFC, outDict, appendFields = ['GROWTH', 'PERCNOHS', 'NEW_NAME'])

In [ ]: df['STDNORM'] = randnorm
    arc.write(outputFC, df)
```
Python Demo
Panel Data IO, Jupyter Notebooks and the PySAL Library
Links to Related Python Projects

Python

- **gis-stat-analysis-py-tutor**
 - Jupyter Notebooks
 - Integrating Open Source Projects Using Python
 - Neighborhood Searching
 - Past Conferences
 - PySAL/ArcGIS API

- **PySAL-ArcGIS-Toolbox**
 - Spatial Econometrics Made Easy
 - spreg module
 - https://github.com/Esri/PySAL-ArcGIS-Toolbox
Future Directions

Python

- **Tighter integration between ArcGIS Python SDK and ArcPy**
 - SDK to be included in Pro Core
 - Spatial Data Frames
 - Geometry Operators: Intersection, Touches, Within etc..
 - Add time
 - Integration with SSDataObject (ArcGIS Pro 2.2), SSCube and SSPanel
 - Native Data Access in arcpy.da

```python
def getSpatialDataFrame(self):
    """Creates an ArcGIS Python API Spatial Data Frame out of all the fields in the DataObject. If the requireGeometry boolean option on the obtainData call was False then True Centroids will be returned instead of the actual geometries."
    """
    import arcgis as ARCGIS

    df = self.getDataFrame()
    shapes = self.getShapesAsArray()
    return ARCGIS.features.SpatialDataFrame(df, geometry = shapes, sr = self.spatialRef)
```
The R-ArcGIS Bridge

Some Background
Introducing the R-ArcGIS Bridge

The R-ArcGIS Bridge

• The R-ArcGIS bridge allows you to connect ArcGIS to R and enables the seamless transfer of data back and forth, along with the ability to integrate R and ArcGIS functionality.
Who Can Use the R-ArcGIS Bridge?

The R-ArcGIS Bridge

ArcGIS users

R users

ArcGIS developers
Requirements for the R-ArcGIS Bridge

Installing The Bridge

ArcGIS Pro

- R
 - 1.1 (or later)
- 3.2.2 (or later)

ArcMap

- RStudio
 - 10.3.1 (or later)
- Optional
Vector Support
The R-ArcGIS Bridge

• Ability to read and write vector data
• Support for key R objects and spatial packages
 - R data frame object
 - Compatibility with sp
 - Compatibility with sf
• Customize data manipulations
 - Craft SQL queries to make selections
 - Subset by specific columns
 - Reproject data as needed
• Maintain spatial geometries when working with dplyr
Raster Support
The R-ArcGIS Bridge

- Ability to read and write raster data
 - Handle big data raster data with the ability to read in chunks by bands
 - Compatibility with CRF format and Mosaic Datasets

- Customize selections and subsets
 - Create subsets by bands or pixel rows and columns
 - Resample options available
 - Select desired pixel format for specific analyses
Using the R-ArcGIS Bridge with Microsoft R

- Microsoft Open R is a publicly available R-version for big data
- Contains almost all CRAN libraries
- Window-based operations and image operators speed up drastically
- Set-up and Usage from Pro is exactly the same as traditional R
How is Microsoft R useful?

Raster data can become a big data problem, quickly

Mosaics: Data structure to store/process rasters in space and time
Expanding Workflows and Creating Script Tools

R-ArcGIS Bridge Demo
Expanding Workflows and Creating Script Tools
Resources
Learn More on Using the R-ArcGIS Bridge

Resources from UC 2018:
- https://github.com/R-ArcGIS

Getting Started:
- Analyzing Crime Using Statistics and the R-ArcGIS Bridge Learn Lesson
- Using the R-ArcGIS Bridge Introductory Web Course

Creating R Script Tools:
- Integrating R Scripts into Geoprocessing Tools Web Course
- arcgisbinding Package Vignette

Powerful, In-depth Workflows in ArcGIS and R
- Identify an Ecological Niche for African Buffalo
Upcoming Sessions

A Deeper Dive

- ArcGIS API for Python
 - Tuesday, July 10th @ 1:00pm
- GeoAI Deep Dive: Implementing Machine Learning Solutions with ArcGIS
 - Tuesday, July 10th @ 1:00pm
- GeoAI Use-Cases: Machine Learning Meets ArcGIS
 - Tuesday, July 10th @ 2:30pm
- Spatial Analysis: The Road Ahead
 - Wednesday, July 11th @ 1:00pm
- Integrating R and ArcGIS for Advanced Analysis
 - Wednesday, July 11th @ 8:30am
 - Thursday, July 12th @ 1:00pm
- Machine Learning in ArcGIS
 - Thursday, July 12th @ 8:30am
 - Thursday, July 12th @ 2:30pm
Please Take Our Survey on the App

Download the Esri Events app and find your event

Select the session you attended

Scroll down to find the feedback section

Complete answers and select “Submit”
Please Take Our Survey on the App

Download the Esri Events app and find your event

Select the session you attended

Scroll down to find the feedback section

Complete answers and select “Submit”
See Us Here

<table>
<thead>
<tr>
<th>WORKSHOP</th>
<th>LOCATION</th>
<th>TIME FRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Title</td>
<td>• Where</td>
<td>• 12:00 – 1:00</td>
</tr>
</tbody>
</table>