3D Analysis Tools in ArcGIS Pro

Matias Codesal
Khalid H. Duri
Workshop Overview

- What’s New in ArcGIS Pro
- Summary of 3D Analyst
- Overview of 3D Data Types
 - 3D Features
 - Surfaces
- Overview of Analysis Capabilities
 - LAS Support
 - Surface Analysis
 - Feature Analysis
- Demos
 - Change Detection
 - LAS Classification
 - Interactive Visibility
What’s New in 3D for ArcGIS Pro

- Scene layer enhancements
 - Integrated mesh support from OSGB
 - Editable point & 3D object scenes
 - ZLAS & LAZ support for point cloud
 - Optimized point cloud for vertically dense scans

- Geoprocessing Analysis
 - Colorize LAS
 - Fence Diagram
 - LAS Height Metrics
 - Regularize Adjacent Building Footprint
 - Various enhancements

- 3D display enhancements
 - Perspective & isometric display
 - Revit support

- Exploratory Analysis
 - Slice
 - Viewshed
 - Line of Sight
 - View Dome
Overview of 3D Data Types

Understanding Surfaces & 3D Geometry
Storing XYZ Information

Vector Geometry
Points | Lines | Polygon
Point Cloud
Mesh

Surface Model
Triangulated Irregular Network
Raster
Understanding the 3D Mesh

- Collection of points used to construct triangle faces that define true 3D data
- Rendering properties like textures, colors, and transparency
- Supported types:
 - Multipatch
 - Indexed 3D Scene Layer (I3S)
 - 3D Symbology
Constructing 3D Features

- Interactive edit session or custom code using ArcGIS SDK
- Symbolize points, lines, and polygons:
 - Procedural rules to create buildings from polygons, trees from points, etc...
 - Extrusion/base height properties to create walls from lines, volumes from polygons, and cylinders from points
 - 3D marker symbols for points, tube symbols for lines
- Derive from spatial operations
- Import 3D models from a variety of data sources:
 - Collada
 - 3D Studio Max
 - OpenSceneGraphBinary (OSGB)
 - OpenFlight
 - VRML/GeoVRML
 - Wavefront OBJ (Pro only)
 - OpenFlight
 - SketchUp (Desktop only)
Understanding the Surface

A representation of continuous data where one Z value exists for a given XY location.

- Temperature
- Gravitational fields
- Wind speeds
- Chemical concentrations
- Many diverse applications…
Surface Data Models

Raster Surface
- Made by interpolation, generalize source measurements to cell size
- Fast to process, support robust math operations

TIN Based Surfaces
- Created by triangulation, maintain source measurements
- Support robust surface definitions & data
Distance Based Interpolation

Inverse Distance Weighted (IDW)
Consider using with evenly distributed source measurements that capture local surface variation.

Natural Neighbor
A better version of IDW, but takes longer to process due to its “smarter” method of applying weights. Consider using if you do not want your surface to exceed the min/max values in the sample measurements.
Trend Interpolators

Trend

Useful for data with gradual variation (e.g. wind speed, temperature)

Spline

Predicts peaks and valleys that are not captured in the sample measurements
Kriging & Topo To Raster

Kriging
Estimates a surface by assuming the distance or direction between the source measurements reflects a spatial autocorrelation that explains variations in the surface.

Topo To Raster
Creates hydrologically correct surface that eliminates local sinks, designed to work well with contour lines.
Triangulated Irregular Network (TIN) Surfaces

TIN
Well-suited for engineering applications and analysis of study areas that are not exceedingly large, provides interactive editing options.

Terrain
Multi-resolution, scalable, offers robust support for handling large amounts of data.

LAS Dataset
Rapidly visualize, filter, perform QA/QC and analyze lidar data. Well suited for aerial collections, supports compressed lidar in ZLAS format.
TIN Surface Features

- Mass points: Measurements used for triangulation
- Erase polygon: Interior areas of no data
- Replace polygon: Assigns a constant z value
- Clip polygon: Defines the interpolation zone

Also supports:
- Break lines
- Tag values
Hard vs. Soft Edge Types
Choosing the Appropriate Surface Model

- What is the nature of data being modeled?
- How is the data distributed?
- How will the data be used?
Surface Analysis

- Change detection
- Calculate area & volume
- Detect outlier measurements from ground
- Reclassify & perform math operations on raster datasets
- Produce derivatives
 - Slope
 - Aspect
 - Curvature
 - Contour Lines
LAS Support in ArcGIS

- Individual LAS/ZLAS files can be directly displayed and processed
- Multiple LAS/ZLAS files & surface constraint features can be viewed via LAS dataset
- ZLAS files save 30% of disk space but cannot be edited
- LAZ files can be displayed by importing to scene layer point cloud
- LAS points are dynamically thinned based on map scale
- LAS format supports designation of classification codes that can be used to identify discrete objects (buildings, roadway, ground, vegetation, bridge decks, etc…)

Classification operations:
- Ground
- Building
- Noise
- Overlap scans
- Height above ground
- Interactive editing
Surface Analysis
LAS Classification & Change Detection
3D Feature Analysis
Overlay | Proximity | Visibility
Proximity Analysis

- Perform 3D buffers
- Identify closest objects in 3D Space
- Find intersection of 3D lines with surfaces/multipatch
- Construct the minimum bounding volume encompassing a cluster of points
Volumetric Overlay Analysis

- Determine if a 3D feature is a closed volume
- Identify features that reside inside volumetric features
- Perform set operator functions on closed volumes:
 - Difference between features
 - Overlap of feature
 - Union of features
Visibility Analysis
Overlay | Proximity | Visibility
Unique offset for the observer

Unique offset for the target

TARGET

OBSERVER
Controlling the Observer

Viewshed frustum defined by:

- Azimuth and vertical angle range
- Visible distance range
- Observer and target offset
Examples of Observer Profiles

Spherical Observer
- Azimuth: 0° to 360°
- Vertical Angle: -90° to 90°
- Distance: 0 to 100 meters

Hemispherical Observer
- Azimuth: 0° to 360°
- Vertical Angle: 0° to 90°
- Distance: 45 to 100 meters

Conical Observer
- Azimuth: 0° to 360°
- Vertical Angle: -60° to -90°
- Distance: 0 to 12 meters

Distance Offset Observer
- Azimuth: 45° to 90°
- Vertical Angle: 0° to 45°
- Distance: 250 to 300 meters
Atmospheric Refraction

- Bending of light passing through the atmosphere
- Influenced by variations in air pressure, density, humidity, temperature & elevation
- Refraction coefficient supported in:
 - Line of sight
 - Skyline
 - Viewshed
 - Solar radiation
Sight Line Analysis

• Determine visibility along a 2-vertex line in true 3D space
• Identify the first point that obstructs a non-visible target
• Interactively generate a sightline and manipulate the scene, observer and target positions to dynamically explore multiple scenarios
Skyline Analysis

- Segment the horizon by its contributing feature
- Create closed volumes bounded by the skyline
Sun Shadow Analysis

- Determines where shadows cast by 3D features land on a surface
- Create closed volumes that can be used to determine the overlapping presence of objects in shaded spaces
 - Right-to-light studies
 - Urban heat island estimation
Viewshed

- Identifies what can be seen from an observer for a vast tract of space
- Automated viewshed supports target offset
- Interactive viewshed supports real-time updates
Hillshade

- Localized illumination from a fixed trajectory of light or from multiple directions that accentuate sharp features
- Multi-directional hillshade provides a planimetric view that can demonstrate terrain characteristics; identify natural & artificial features
Visibility Analysis
Using Exploratory Tools