Introduction to Geodatabase and Spatial Management in ArcGIS

Craig Gillgrass
Esri
Session Path

• The Geodatabase
 - What is it?
 - Why use it?
 - What types are there?
 - What can I do with it?

• Query Layers

• What’s coming in 10.1
What is the Geodatabase?

- Core ArcGIS data model
 - A comprehensive model for representing and managing GIS data

- A physical store of geographic data
 - Scalable storage model supported on different platforms

- A transactional model for managing GIS workflows

- Set of COM components for accessing data
Geodatabase is based on relational principles

- Leverages key DBMS principles and concepts to store geographic data as tables in a DBMS
 - Data is organized into tables
 - Tables contain rows
 - All rows in a table have the same attributes
 - Each attribute has a type
 - Relational integrity rules exist for tables

- The core of the geodatabase is a standard relational database schema
 - a series of standard database tables, column types, indexes, and other database objects
Geodatabase is based on relational principles …

- A feature class is stored as a simple DBMS table
- Each row represents a feature
- The fields in each row represent various characteristics or properties of the feature
- One of the fields holds the feature geometry which is stored as a spatial type
Geodatabase is based on relational principles …

- A feature class is stored as a simple DBMS table
- Each row represents a feature
- The fields in each row represent various characteristics or properties of the feature
- One of the fields holds the feature geometry which is stored as a spatial type
• There are two sets of tables:
 - Dataset tables (user-defined tables)
 - Geodatabase system tables
User-defined tables

- Stores the content of each dataset in the geodatabase
- Datasets are stored in 1 or more tables
- Spatial Types enhance the capabilities of the geodatabase
 - SQL access to geometry
 - Industry standard storage model and API
Geodatabase system tables

- System tables store definitions, rules, and behavior for datasets
- Tracks contents within a geodatabase
- 4 main system tables
- Geodatabase schema is stored primarily within an XML field
Geodatabase Data Management Approach

• Simple features + logic
 - All geographic data stored as tables in a DBMS
 - Extend functionality and data integrity
 - Functionality is consistent across DBMS’

• Application logic (software)
 - Works on standard DBMS tables
 - Implements GIS integrity and behavior
 - Business rules, topology, networks
Geodatabase Data Management Approach …

• Editing and data compilation
 - Rich set of editing tools
 - Maintain spatial and attribute integrity
 - Undo and redo edits
 - Multiple users editing the same data

• Versioning work flows
 - Long transactions
 - Distributed data management
 - Archiving

• Robust, customizable framework
 - Build and manage your own specific GIS solution
3 Types of Geodatabases

- Geodatabases can be stored different ways
 - Personal geodatabase (Access mdb file)
 - File geodatabase
 - Directory of binary files
 - ArcSDE for SQL Server Express
 - Enterprise ArcSDE
 - 5 supported DBMSs
3 Types of Geodatabases…

<table>
<thead>
<tr>
<th>Feature</th>
<th>Personal GDB</th>
<th>File GDB</th>
<th>ArcSDE GDB (3 editions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage format</td>
<td>Microsoft Access</td>
<td>Folder of binary files</td>
<td>DBMS</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>2 GB</td>
<td>1 TB per table*</td>
<td>Depends on edition</td>
</tr>
<tr>
<td>Supported O/S platform</td>
<td>Windows</td>
<td>Any platform</td>
<td>Depends on edition</td>
</tr>
<tr>
<td>Number of users</td>
<td>Single editor Multiple readers</td>
<td>Single editor Multiple readers</td>
<td>Multiple editors & readers</td>
</tr>
<tr>
<td>Distributed GDB functionality</td>
<td>Check out/check in and One-way replication</td>
<td>Check out/check in and One-way replication</td>
<td>Replication (all types) & versioning</td>
</tr>
</tbody>
</table>

* By default; option to have 256 TB per table
3 Types of Geodatabases…

<table>
<thead>
<tr>
<th></th>
<th>Personal GDB</th>
<th>File GDB</th>
<th>ArcSDE GDB (3 editions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage format</td>
<td>Microsoft Access</td>
<td>Folder of binary files</td>
<td>DBMS</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>2 GB</td>
<td>1 TB per table*</td>
<td>Depends on edition</td>
</tr>
<tr>
<td>Supported O/S platform</td>
<td>Windows</td>
<td>Any platform</td>
<td>Depends on edition</td>
</tr>
<tr>
<td>Number of users</td>
<td>Single editor Multiple readers</td>
<td>Single editor Multiple readers</td>
<td>Multiple editors & readers</td>
</tr>
<tr>
<td>Distributed GDB functionality</td>
<td>Check out/check in and One-way replication</td>
<td>Check out/check in and One-way replication</td>
<td>Replication (all types) & versioning</td>
</tr>
</tbody>
</table>

* By default; option to have 256 TB per table
3 Types of Geodatabases…

<table>
<thead>
<tr>
<th></th>
<th>Personal GDB</th>
<th>File GDB</th>
<th>ArcSDE GDB (3 editions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage format</td>
<td>Microsoft Access</td>
<td>Folder of binary files</td>
<td>DBMS</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>2 GB</td>
<td>1 TB per table*</td>
<td>Depends on edition</td>
</tr>
<tr>
<td>Supported O/S platform</td>
<td>Windows</td>
<td>Any platform</td>
<td>Depends on edition</td>
</tr>
<tr>
<td>Number of users</td>
<td>Single editor Multiple readers</td>
<td>Single editor Multiple readers</td>
<td>Multiple editors & readers</td>
</tr>
<tr>
<td>Distributed GDB functionality</td>
<td>Check out/check in and One-way replication</td>
<td>Check out/check in and One-way replication</td>
<td>Replication (all types) & versioning</td>
</tr>
</tbody>
</table>

* By default; option to have 256 TB per table
Modeling Real-World Data with the Geodatabase

- A geodatabase contains datasets.
 - Datasets represent collections of information with a real-world interpretation.
 - Types of geographic datasets:
 - Tables
 - Object classes, feature classes, relationship classes
 - Feature datasets
 - Networks, Topologies, Raster and cadastral datasets

- Datasets have associated information to help manage integrity, behavior, and interpretation
 - Domains, Relational integrity, Topology, Metadata
The geodatabase enhances data and thematic layers by adding rules and behavior:
- Spatial and relational integrity rules
- Data validation
- Business logic

Create thematic layers with behavior:
- Road and utility networks
- Parcel fabrics
- Terrain and 3D surfaces
- Location services

Extended framework for advanced workflows and editing:
- Multiuser editing, Data Replication, Editor tracking, Archiving
Exploring a Geodatabase Demo

• Explore a Geodatabase
 - Tables
 - Feature Classes
 - Subtypes
 - Domains
 - Relationship Classes
Editing Geodatabases

• **ArcGIS datasets stored in the geodatabase are editable**
 - Modify building footprints in parcel management
 - Add water mains to a water network
 - Update land owners information stored in a table
 - Etc…

• **Transaction model for editing in ArcGIS**
 - Edits are performed in an edit session
 - Open session – edit – save edits / don’t save edits
 - A series of edit operations constitutes a transaction
 - Unit of work performed against the database
 - The transaction is either committed or rolled back
Editing Geodatabases...

• Personal Geodatabases
 - Single user editing on small datasets
 - Multiple readers
 - Editing locks at geodatabase level

• File Geodatabase
 - Single user editing small to very large datasets
 - Multiple readers
 - Editing locks at the dataset level
Editing Geodatabases…

• ArcSDE Geodatabases
 - Extend the transaction model with Versioning
 - Multiuser editing without locking
 - Unique isolated view of the geodatabase

• Benefits of versioned editing
 - Multiple editors, editing over long periods of time
 - Undo / Redo
 - Archiving
 - Replication
Three different ways of editing Geodatabases

- **Versioned Editing (Long Transactions)**
 - Editing in a version through ArcGIS

- **Non-Versioned Editing (Short Transactions)**
 - Editing the data directly through ArcGIS

- **Editing through SQL (Short Transactions)**
 - Editing the data directly through SQL
Versioning - What is it?

- Technology that allows multiple users to edit and view data at the same time
 - Appears to users as if they have their own copy of a table
 - Does not apply locks or duplicate data
What is a Version?

• An **alternative view** of the geodatabase that has:
 – an owner
 – a description
 – a permission
 – a parent version

• Versions are not affected by changes occurring in other versions of the database
What is a Version?

• An alternative view of the geodatabase that has:
 – an owner
 – a description
 – a permission
 – a parent version

• Versions are not affected by changes occurring in other versions of the database
Versioned Editing – How It Works

- Class must be registered as Versioned
 - Creates Adds and Deletes tables for tracking edits
Versioned Editing – How It Works

• Adding Features
 - Record added to the Adds Table
 - Version will be referenced
Versioned Editing

- **Versioned Edit Sessions**
 - Editing done through a version
 - Changes tracked on delta tables
 - Support concurrent editing with long transactions (hours/days).
 - Undo/redo editing experience.
 - No locking or data extraction required.
Versioning allows us to support

- Replication

Archiving
Session Path

• The Geodatabase
 - What is it?
 - Why use it?
 - What types are there?
 - What can I do with it?

• Query Layers

• What’s coming in 10.1
Query Layers

• Query Layer is simply a layer or table defined by a SQL query

• Direct, read-only access to spatial data independent of where it is stored

• Allows information stored in a database to be easily integrated with ArcGIS

• Data does not need to be registered with ArcSDE or the geodatabase
What does this mean to a developer?

• You now have a simple method to integrate data from databases
 - SQL Workspace: New Workspace Type at 10.0
 - SQLWorkspaceFactory

• Can now use the full power of SQL to create feature classes
 - Joins, Spatial Types, Aggregation, Field Derivation
 - Basically if you can do it with SQL you can do it with Query Layers

• Can now do more with your Geodatabase datasets

• SQL Server, Oracle, PostgreSQL, DB2 and Informix
 - Need access to a spatial type
 - Database release and spatial types must be supported by ArcGIS
Working with query layers

• Query layers behave like any other feature layer or table
 - Set symbology and display properties
 - Use as input in GIS analysis (e.g., geoprocessing)
 - Save as a layer package
 - Published as part of the map document → map services
 - Read only

• Query executed when the layer is displayed or used
 - Allows for the latest information to be visible → very useful for dynamic information
Prerequisites for working with query layers

- Result of a query must conform to the ArcGIS Data Model
 - Single shape field
 - Single entity type (Point, Line, Polygon)
 - Single spatial reference

- Can still access tables that do not use this data model
 - Just need to define the query against this table to conform to the above standards
Query Layers Demo

- Accessing spatial data in a database