Neuse 01 Regional Watershed Plan

Characterizing Stream Buffer Condition in GIS

2014 ESRI SERUG Conference
May 5th - 7th
Charlotte, NC
Presentation Outline

- Background
- Methodology
- Results
- Questions
Background
Where is the Neuse River Basin?

North Carolina
Where is the Neuse River Basin?

North Carolina
Where is the Neuse River Basin?

North Carolina
Where is the Neuse River Basin?

- ~ 275 miles in length
- ~ 6,200 sqmi drainage area

North Carolina
Neuse River Basin - Impacts

- High nutrient levels entering river – Pamlico Sound
 - Eutrophication
 - Occurrences of hypoxia
 - Outbreaks of Pfiesteria
 - Fish kills
Neuse River Basin - Impacts

- River/tributaries designated as nutrient sensitive waters
- Nutrient management strategy established to reduce loads
- Significant need for stream/wetland mitigation from rapid population growth and widespread development
Where is the Neuse River RWP study area?

North Carolina

- Neuse River Basin
- Neuse River
- Pamlico Sound
Where is the Neuse River RWP study area?

North Carolina
Neuse River RWP Study Area
Neuse River RWP – Purpose

- To identify and prioritize potential mitigation projects to offset ecological impacts
 - Stream/wetland restoration
 - Buffer restoration
 - Nutrient offset
 - BMPs
 - Habitat preservation

- Proposed I-540 Corridor is a major driver for mitigation related to development
Neuse River RWP Phases

- Phase I: Characterization of Current Watershed Conditions
- Phase II: Detailed Watershed Assessment
- Phase III: Development of Watershed Management Plan and Project Atlas
- Phase IV: Implementation of Watershed Management Plan and Project Atlas
Phase I - Characterization of Current Watershed Conditions

- Remote sensing using GIS
- Preliminary evaluation of watershed conditions
- Preliminary identification of functional stressors/assets
- Perform functional assessment of 18 subwatersheds
- Identify subwatersheds for more detailed study
Prioritization of Subwatersheds

- Four functional categories
 - Stream corridor condition
 - Wetland condition
 - Water quality
 - Presence of important habitats
Prioritization of Subwatersheds

- Four functional categories
 - Stream corridor condition
 - Wetland condition
 - Water quality
 - Presence of important habitats
Stream Corridor Condition - Stream Buffers

- Functions of Vegetated Buffers
 - Reduce pollutant loading by filtering stormwater runoff
 - Stabilize stream banks
 - Provide shade to reduce water temperatures
 - Provide habitat structure
Stream Buffer Condition – No Buffer
Stream Buffer Condition – No Buffer
Methodology

Stream Buffer Condition Analysis
Don’t fear the raster world:

“I’m just a caveman…your world frightens and confuses me”
Software

- ESRI ArcMap 10.1
- Spatial Analyst
GIS Datasets

- Vector
 - National Hydrography Dataset (NHD) 24K layer from USGS

- Raster
 - National Land Cover Database 2006 (NLCD)
Stream Buffer Classifications

- Characterize stream buffers using the following classifications based on a 50 foot buffer width:
 - **No buffer**: no buffer either side
 - **Minimal buffer**: < 50 feet both sides
 - **Adequate buffer**: > 50 feet on one side
 - **Good buffer**: > 50 feet both sides
 - **Exceptional buffer**: > 200 feet both sides
Stream Buffer Classifications

- Characterize stream buffers using the following classifications based on a 50 foot buffer width:
 - No buffer ‡: no buffer either side
 - Minimal buffer ‡: < 50 feet both sides
 - Adequate buffer ‡: > 50 feet on one side
 - Good buffer ‡: > 50 feet both sides
 - Exceptional buffer ‡: > 200 feet both sides

GOAL ‡: ATTRIBUTED NHD VECTOR LAYER
Reclass 2006 NCLD (Buffer/No Buffer)

- Intact buffer classes (assigned value of 1)
 - Undeveloped, primarily forested land cover classes associated with well established buffers

- Denuded buffer classes (assigned value of 0)
 - Low to high density developed lands
 - Open space
 - Pastureland
 - Agricultural land
Reclass 2006 NCLD (Buffer/No Buffer)
Unioned Merged NHD to Buffer Raster

- Created shorter stream segments from which to calculate and report buffer width
 - Attributed with unique ID to which buffer classifications will be joined
- Buffer width values measured along these shorter stream segments were more consistently uniform
Union Merged NHD to Buffer Raster
Union Merged NHD to Buffer Raster
Measure Buffer Width – Euclidean Distance
Measure Buffer Width – Raster Calculator (X)
Copy Parallel - NHD Centerline

- Enables measurement of buffer width along both floodplains independently
- Left/Right copied parallel segments retain unique ID of centerline
Measure Buffer Width Range – Focal Statistics

- Ran Focal Statistics on Euclidean distance buffer width raster
- Measured buffer along left/right floodplains independently using a raster analysis mask per floodplain:
 - Range
 - Circle
Measure Buffer Width Range – Focal Statistics
Measure Buffer Width Range – Focal Statistics
Zonal Tabular Statistics

- For both left/right floodplain buffer width measurements
- Used unique IDs of left/right floodplain polylines as zone (originally from the NHD layer)
- Joined left/right floodplain zonal statistics tables to NHD centerline layer using these unique IDs
Zonal Tabular Statistics - Majority
Zonal Tabular Statistics

<table>
<thead>
<tr>
<th>Rowed</th>
<th>VALUE</th>
<th>COUNT</th>
<th>AREA</th>
<th>MIN</th>
<th>MAX</th>
<th>RANGE</th>
<th>MEAN</th>
<th>STD</th>
<th>SUM</th>
<th>VARIETY</th>
<th>MAJORITY</th>
<th>MINORITY</th>
<th>MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>900</td>
<td>72</td>
<td>13</td>
<td>6</td>
<td>102.222</td>
<td>19.81457</td>
<td>92</td>
<td>4</td>
<td>9</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>400</td>
<td>10</td>
<td>50</td>
<td>40</td>
<td>67.52174</td>
<td>13.43218</td>
<td>115</td>
<td>12</td>
<td>72</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>15</td>
<td>1500</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>66.79034</td>
<td>51.96253</td>
<td>917</td>
<td>912</td>
<td>50</td>
<td>64</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>50</td>
<td>5000</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>31.35</td>
<td>20.81289</td>
<td>3003</td>
<td>2984</td>
<td>72</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>200</td>
<td>2000</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>27.27747</td>
<td>17.24779</td>
<td>389</td>
<td>28</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>30</td>
<td>3000</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>7.955769</td>
<td>26.92911</td>
<td>4137</td>
<td>37</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>150</td>
<td>1500</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>113.1333</td>
<td>6.22084</td>
<td>3394</td>
<td>117</td>
<td>72</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>20</td>
<td>2000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>4.673333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>300</td>
<td>3000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.323968</td>
<td>1.042089</td>
<td>3142</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>500</td>
<td>5000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>150</td>
<td>1500</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>200</td>
<td>2000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>500</td>
<td>5000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1000</td>
<td>10000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>3000</td>
<td>3000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>5000</td>
<td>5000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>10000</td>
<td>10000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>30000</td>
<td>30000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>50000</td>
<td>50000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>100000</td>
<td>100000</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3.33333</td>
<td>4.714045</td>
<td>4120</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

RANGE: The range is calculated as MAX - MIN.

MAJORITY: The majority value is highlighted in red.
Buffer Width Classification Attribution

- Field calculator

- Code fields for left/right floodplain according to Majority statistic buffer width category per floodplain:
 - 0’ buffer width = 0
 - 1’ – 49’ buffer width = 1
 - > 50’ buffer width = 2

- No buffer ‡ no buffer either side
- Minimal buffer ‡ < 50 feet both sides
- Adequate buffer ‡ > 50 feet on one side
- Good buffer ‡ > 50 feet both sides
- Exceptional buffer ‡ > 200 feet both sides
Buffer Width Classification Attribution

- Sum left/right floodplain coded values:
 - 0 (0 + 0) =
 - no buffer on either side
 - 1 or 2 (0 +1 or 1+1) =
 - minimal buffer on both sides (<50 feet)
 - 2 or 3 (2 + 1 or 2 + 0) =
 - adequate buffer on one side (>50 feet on one side)
 - 4 (2 + 2) =
 - good buffer on both sides (>50 feet)
<table>
<thead>
<tr>
<th>MAJOR_R50</th>
<th>MINOR_R50</th>
<th>MEDIAN_R50</th>
<th>MAJOR_L50</th>
<th>MINOR_L50</th>
<th>MEDIAN_L50</th>
<th>RMAJCODE50</th>
<th>LMAJCODE50</th>
<th>MAJCDSUM50</th>
<th>BUFWIDTH50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>40</td>
<td>44</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>60</td>
<td>66</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>70</td>
<td>77</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>80</td>
<td>88</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
<tr>
<td>90</td>
<td>99</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Buffer (on either side)</td>
</tr>
</tbody>
</table>

Buffer Condition

- **No Buffer (on either side)**
- **Minimal Buffer (<50 feet both sides)**
- **Adequate Buffer (>50 feet both sides)**
- **Adequate Buffer (>50 feet one side)**

Code

1. No Buffer (on either side)
2. Minimal Buffer (<50 feet both sides)
3. Minimal Buffer (<50 feet both sides)
4. Adequate Buffer (>50 feet both sides)
5. Adequate Buffer (>50 feet both sides)
6. Adequate Buffer (>50 feet both sides)
7. Adequate Buffer (>50 feet both sides)
8. Adequate Buffer (>50 feet both sides)
9. Adequate Buffer (>50 feet both sides)
10. Adequate Buffer (>50 feet both sides)
11. Adequate Buffer (>50 feet both sides)
12. Adequate Buffer (>50 feet both sides)
13. Adequate Buffer (>50 feet both sides)
14. Adequate Buffer (>50 feet both sides)
15. Adequate Buffer (>50 feet both sides)
Results
Stream Buffer Condition - Results
Stream Buffer Condition - Results
Stream Buffer Condition – Results (No Buffer)
Stream Corridor Prioritization

Figure 16 - Prioritization of Subwatersheds for Stream Corridor Condition
Neuse 01 Regional Watershed Plan

Wake and Johnston Counties, NC
Stream Corridor Restoration

Before vs After

Before image shows a degraded stream with little vegetation and a lack of water flow. After image shows a restored stream with increased vegetation, a wider water flow, and a fish in hand, indicating increased fish population and habitat.
Questions?

Jason Lorch
Environmental Scientist
jlorch@wildlandseng.com
Tel. 919-413-1214

Scott Gregory, GISP
Environmental Scientist
sgregory@wildlandseng.com
Tel. 704-451-2177