Integrate CCTV data to enterprise GIS work flows

Otay Water District
Introduction

• Background of Otay Water District
• GIS at Otay
• CCTV for Sewer Collection System
• Integrate CCTV and Inspection data with GIS
• NASSCO standard (PACP, MACP and LACP) rating in GIS and for Asset Management
• Inter-department workflows
Otay Water District

South San Diego County, California
125.5 square miles,
52,000 customers
- Potable
- Recycle
- Sewer

Second largest in San Diego County.
Only District with lands for future development
GIS at Otay

- Data collection – Survey grade
- ArcGIS suite as the platform
- Enterprise GIS architecture design
- Data models
- Applications
- System integration
- Workflows
SCADA Integration

GIS Development Timeline

- 2001: Conversion from Paper/CAD
- 2005: User Needs Analysis, Data Model Design, Cluster Server ArcSDE Storage
- 2007: Business Analysis for Mobile GIS, New Facilities Update and Redline
- 2009: Business Analysis for Data Update
- 2011: Permit Integration, Permit Integration
- 2013: SCADA Integration, CMMS Integration Cityworks, AVL GPS Insight, Dig-Alert Dig Smart

Data:
- Conversion From Paper/CAD
- Atlas Book
- Mobile GIS
- As-built Viewer
- E-facility book
- Dashboard Viewer
- Asset Management Data

Process:
- User Needs Analysis
- System Architecture Design
- Business Analysis for Mobile GIS
- Asset Management Interview

CAD, Shapefile, Personal Geodatabase, Enterprise Geodatabase
CCTV (Closed-Circuit Television)

Inspection and Condition Assessment - Before

- Multiple Contractors for different time periods.
 - Different rating systems
 - Different reporting systems
- Lack of access for District staff - video files were stored at district server
- Lack of QAQC
CCTV Inspection and Condition Assessment - Current
GIS data as the foundation

• District CCTV van with computer equipment and CCTV camera

• Unique ID was assigned to each pipe segment in GIS

• ArcReader application and CCTV interface/data management software (POSM) were installed in the van’s computer

• GIS data was exported as the foundation to inspect the pipes
Operation to collect the inspection data

- Locate the pipe through ArcReader
- Prepopulate pipe information from GIS automatically
- Enter the inspection info into POSM
- POSM controls the CCTV camera
- Observations are entered
- PACP and MACP codes are automatically populated
POSM - Custom

Project: NORTH DOUGLAS VILLAGE 4

Asset ID:

Manhole: 330227M23 to 330227M11

Direction: Forward

Location: THORNBERG

Time: 9/13/2006 12:54:00 PM

Resume Selected

Start New Session

Hansen / Neztek Manager

Print Reports for Selected

Database Template Editor

Observation and Code Editor

Delete Selected Session

Import CSV GIS Data

Export GIS and HTML Data

Modify Session Information

Import POSM Data

Import Nassco Pacp Data

Database Connection Manager

ReSync Database

Edit Preferences

Session Management

Exit Posm
Synch field data to GIS server

• Schedule the CCTV van to connect to network
• Synchronize the newly collected records into server database
• Maintain the database in the van periodically.
POSM server based database

- SQL server based
- Use FacilityID as the unique key
- Create a unique URL for inspection report for each segment
- Adopt the NASSCO rating standard
NASSCO standard for sewer system

- **NASSCO** - National Association of Sewer Service Companies
- Adopt the NAASSO Standard across the board
 - Operation
 - Engineering
 - Asset Management program
- Promote Training and Certification Program in the District
 - Pipeline Assessment and Certification Program (PACP)
 - Manhole Assessment and Certification Program (MACP)
 - Lateral Assessment and Certification Program (LACP)
Section 4—Continuous Defect Coding

"TRULY" 4-1
- Truly continuous defects run along the sewer without any interruption for more than three feet (1 meter).
- Examples:
 - Longitudinal Fractures
 - Longitudinal Cracks

"REPEATED" 4-1
- Repeated continuous defects occur at regular intervals along the sewer.
- These occur at pipe joints and include:
 - Encrustation
 - Open Joints
 - Circumferential Fractures

Code Changes in Version 6.0.1
- Added: Buckling Wall (KW), Buckling Dimpling (KD), and Buckling Inverse Curvature (KI)

Section 5—Structural Defect Coding (Module 6A)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Module 5.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Crack</td>
<td>5-1</td>
</tr>
<tr>
<td>CL</td>
<td>Longitudinal</td>
<td>5-2</td>
</tr>
<tr>
<td>CC</td>
<td>Circumferential</td>
<td>5-2</td>
</tr>
<tr>
<td>CM</td>
<td>Multiple</td>
<td>5-2</td>
</tr>
<tr>
<td>CS</td>
<td>Spiral</td>
<td>5-2</td>
</tr>
<tr>
<td>CH</td>
<td>Hinge</td>
<td>5-2</td>
</tr>
<tr>
<td>S</td>
<td>Surface Damage</td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td>Reinforcement</td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>Aggregate</td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>Visible</td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>Aggregate</td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>Visible</td>
<td></td>
</tr>
<tr>
<td>SMW</td>
<td>Missing Wall</td>
<td>5-32</td>
</tr>
<tr>
<td>LZ</td>
<td>Liner</td>
<td></td>
</tr>
<tr>
<td>WF</td>
<td>Welding Failure</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Point Repair</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Brickwork</td>
<td></td>
</tr>
</tbody>
</table>

Updated November 2010
NASSCO Rating / Scoring System

- Structural Scoring
- Operational and Maintenance Scoring
- Number of Defects
- Pipe Rating
- Ratings Index

<table>
<thead>
<tr>
<th>Grade</th>
<th>Structural</th>
<th>O&M</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>418</td>
<td>58</td>
<td>476</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Overall</td>
<td>425</td>
<td>70</td>
<td>495</td>
</tr>
</tbody>
</table>

Number of Defects | 212 | 32 | 244
Pipe Rating | 322Z| 432E| 4332
Pipe Ratings Index| 2 | 2 | 2
Operation preventive maintenance

- Schedule the cleanup using the condition score
- Target more on the known area for high frequent maintenance
- Notify the property owner for lateral cleanup
- Develop a rehabilitation and replacement plan based on the inspection data
- Budget the replacement based on the condition score
Engineering Capital Improvement Plan

- Access the CCTV data through GIS viewers
- Access the observation report through GIS viewers
- Produce critical pipe segment report
- Asset Management Program
<table>
<thead>
<tr>
<th>Distance</th>
<th>Fault Observation</th>
<th>Time</th>
<th>Picture</th>
</tr>
</thead>
</table>
| 87.1 | Water Mark
Severity: None
Percent: 20 | 4:10 | ![Image](image1.jpg) |
| 134.4 | Alignment Left
Severity: None
Percent: 10
Remarks: Slight bend to left
Maint Weight: 1 | 06:12 | ![Image](image2.jpg) |
| 143.4 | Camera Underwater
Severity: None
Cont Defect: S02
Maint Weight: 4 | 06:52 | ![Image](image3.jpg) |
| 160.9 | Camera Underwater
Severity: None
Cont Defect: F02
Maint Weight: 4 | 08:03 | ![Image](image4.jpg) |
Project Name:

Date: 5/23/2013 1:34:00 PM
Street: 1112 Cadogann dr.
Length Surveyed: 212.1
Pacp Quick Overall Rating: 4C11
Height (Diameter): 8
Street: 1112 Cadogann dr.

Facility ID: MH-377-001, MH-377-003
Upstream MH: MH-377-001
Downstream MH: MH-377-003
Direction of Survey: Downstream
Material: Polyvinyl Chloride

ID Number: MH-377-001

(0.0) AMH - Manhole Remark: CCTV Downstream
(0.0) MWL - Water Level

(87.1) MWL - Water Level Sag - Cont Def: S01 Remark: Start of sag
(87.1) MWM - Water Mark

(134.4) LL - Alignment Left Remark: Slight bend to left
(143.4) MCU - Camera Underwater - Cont Def: S02

(160.9) MCU - Camera Underwater - Cont Def: F02
(163.8) MWLS - Water Level Sag - Cont Def: F01 Remark: Start of sag

(210.3) MGO - General Observation Remark: Connection to manhole looks good
(212.1) MGO - General Observation Remark: Base of Manhole looks good
(212.1) MGO - General Observation Remark: Looking up to Manhole cover looks good
(212.1) AMH - Manhole Remark: End of inspection

Total Distance: 212.1

ID Number: MH-377-003
<table>
<thead>
<tr>
<th>Saved Reports for the Current Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
</tr>
<tr>
<td>Observation (Fault) Page</td>
</tr>
<tr>
<td>Plot of the Pipe</td>
</tr>
<tr>
<td>List of the Captured Video</td>
</tr>
<tr>
<td>Defect Header and Codes</td>
</tr>
<tr>
<td>Additional Reports</td>
</tr>
<tr>
<td>Folder</td>
</tr>
<tr>
<td>--------</td>
</tr>
</tbody>
</table>
Conclusion and Future plan

- Leverage GIS and other new technology to manage the traditional utility maintenance program
- Integrate with Field Mobile GIS application (InfraMap)
- Integrate with Sewer Master Plan
- Integrate with CMMS
- Asset Management
Thank You!

Contact info:

Ming Zhao: GIS Manager mzhao@otaywater.gov
Leonel Torres: GIS Analyst Leonel.Torres@otaywater.gov