Power of Data Project Builds Bridges to Geospatial Inquiry across the Nation

Lori Rubino-Hare

Mark Manone
What is the Power of Data?

A 35-hour professional development program that helps secondary teachers enhance existing lessons with Geospatial Inquiry.

Teachers engage in adult-level science-focused Geospatial Inquiry as learners and reflect.

Teachers develop similar Geospatial Inquiry for students in their specific content.

Offered by 28 Facilitators in 18 states and DC
Design Principles

Geospatial Inquiry:

• is used for a **purpose** (answer, explanation, solution).
• is **socially constructed**.
• promotes **cross-disciplinary practices** and **21st century skills**.
• is **iterative and sequenced over time** and employs technological and communication **scaffolds** to promote **conceptual understanding** of big disciplinary ideas.
• uses geospatial technologies as **tools** (patterns, evidence)
• is a **reflective practice**.

Engaging in Geospatial Inquiry and seeing how it is used by professionals provides inspiration to enter **STEM careers**.
Goals for Teachers

- Increase understanding of Geospatial Inquiry
- Increase confidence and skills for facilitating Geospatial Inquiry with students
- Identify opportunities to implement Geospatial Inquiry to enhance student learning of key disciplinary concepts
- Increase awareness of careers that could inspire students to enter STEM fields
Components

Agenda for 35 Hour POD Teacher Workshop

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
<th>Session 4</th>
<th>Session 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro to POD</td>
<td>GST Pre Assessment</td>
<td>Geospatial Inquiry</td>
<td>Pedagogical Moves</td>
<td>Geospatial Inquiry</td>
</tr>
<tr>
<td>Geospatial Inquiry</td>
<td>Designing a Geospatial Inquiry</td>
<td>Career Spotlight</td>
<td>Pedagogical Moves</td>
<td>Metacognition, Evaluation, & Homework</td>
</tr>
<tr>
<td>Geospatial Inquiry</td>
<td>Implications for Teaching with Geospatial Inquiry</td>
<td>Career Spotlight</td>
<td>Designing a Geospatial Inquiry</td>
<td>Pedagogical Moves</td>
</tr>
<tr>
<td>Geospatial Inquiry</td>
<td>Implications for Teaching with Geospatial Inquiry</td>
<td>Career Spotlight</td>
<td>Pedagogical Moves</td>
<td>Metacognition, Evaluation, & Homework</td>
</tr>
<tr>
<td>Implications for Teaching with Geospatial Inquiry</td>
<td>POD Research Overview</td>
<td>Designing a Geospatial Inquiry</td>
<td>Celebration</td>
<td>GST Post Assessment</td>
</tr>
<tr>
<td>Implications for Teaching with Geospatial Inquiry</td>
<td></td>
<td></td>
<td>Workshop Evaluation</td>
<td></td>
</tr>
</tbody>
</table>
What do teacher educators understand about the POD Project?

(30) Facilitators receive education and support for POD PD model

Facilitators plan and implement POD TW with integrity

Facilitators support local teachers with resources, feedback, and opportunities for growth

Increased teacher learning and implementation of practice

Increased opportunities for students to engage in Geospatial inquiry

Improved student interest in, awareness of, & attitude towards STEM/GST careers

Context such as teacher educator, teacher, and student characteristics, curriculum, policy and working environment

DRL 1513287
Context such as teacher educator, teacher, and student characteristics, curriculum, policy and working environment

Facilitators receive education and support for POD PD model

Facilitators plan and implement POD TW with integrity

Facilitators support local teachers with resources, feedback, and opportunities for growth

What do teacher educators understand about the POD Project?

How do teacher educators translate their understandings of the POD Project into Teacher Workshops?

Facilitators plan and implement POD TW with integrity

(900) Increased teacher learning and implementation of practice

Increased opportunities for students to engage in Geospatial inquiry

Improved student interest in, awareness of, & attitude towards STEM/ GST careers

What aspects of the POD Teacher Workshops enable teachers to implement GST integrated projects with students?
What do teacher educators understand about the POD Project?

Facilitators receive education and support for POD PD model

How do teacher educators translate their understandings of the POD Project into Teacher Workshops?

Facilitators plan and implement POD TW with integrity

What aspects of the POD Teacher Workshops enable teachers to implement GST integrated projects with students?

Facilitators support local teachers with resources, feedback, and opportunities for growth

Increased teacher learning and implementation of practice

(27,000) Increased opportunities for students to engage in Geospatial inquiry

(27,000) Improved student interest in, awareness of, & attitude towards STEM/GST careers

What factors help students develop interest in STEM and/or GST careers?

Context such as teacher educator, teacher, and student characteristics, curriculum, policy and working environment
Progress

- 28 Facilitators
- 19 Teacher Workshops
- 156 teachers
- 7 Teacher Workshops in progress
- 471 students
Geospatial Analysis Framework
(Mitchell, 1999)

1. Examining where things are
2. Examining most and least
3. Finding areas of concentration
4. Finding what’s inside
5. Finding what’s nearby
6. Examining change over time
Geospatial Inquiry Lesson Plan Template

Begin with the End in Mind – Big idea

Ask Questions – Guiding question

Geospatial Analyses and Data

Evidence of Student Learning (diagnostic, formative, summative)

Quality of Evidence/Criteria for Exemplary Performance

Examine Geospatial Data

Map the Geospatial Inquiry

<table>
<thead>
<tr>
<th>Activity</th>
<th>Learning Goal</th>
<th>How it helps students address the guiding question</th>
</tr>
</thead>
</table>

Scaffolds (participation, communication, technology)
Guiding Questions from Teachers

• What are risks that contribute to the contamination of groundwater?
• Is there any correlation: locations of mosquito-borne illness and range of specific species? Specific natural disasters and an increased incidence of mosquito-borne illness?
• How will you be affected if the New Madrid fault reactivates with similar energy to the 1811-12 events?
• How can archaeologists utilize GIS to locate possible sites of historical and cultural interest for exploration?
• Which locations/features within the Panama Canal Construction Zone best represent the challenges the US overcame to successfully build it?
• Where is the world’s population distributed? How can we tell? Why is this important?
Tips – Teaching with GIS

- Videos, tutorials for future reference
- Experience as adult learners first – multiple times – then apply it to classroom
- Expect technology glitches

- Feedback – early and often..scale, realistic
- Hack Esri GeoInquiries
- Data buckets
- Teams of facilitators recommended (pedagogy and GST)
Lessons from POD Facilitators

- Face to face cannot be replaced
- TIME to explore, generate lessons, talk
- Local data, local issues
- Less tech is more (AGOL)
- Provide examples of rubrics, products

- Pedagogy + Technology = mixed reviews
- Multiple rounds of Geospatial Inquiry, more varied examples
- Differentiated instruction for teachers
Thank You

Lori.Hare@nau.edu
Mark.Manone@nau.edu

Special thanks:

- POD Facilitators
- Esri/T3G/Fitzpatrick
- POD Teachers
- GISetc
- Co-PIs (Bloom, Palmer, Sample, Whitworth)
- Advisors (Baker, Cunningham, Daehler, Yanow)
- NSF ITEST
- Horizon Research, Inc.

NSF ITEST