GIS in Design:
How landscape architecture students use GIS in design

2018 Education Summit at Esri UC
07/07/2018

Miran Jung Day, Assistant Professor
Landscape Architecture Department
College of Architecture Environmental Design
CAL POLY San Luis Obispo, CA
WHAT?

Projects from LA438: GIS Application to Design Projects to see how students in Landscape Architecture use GIS in the design process

Design (Process)

- Background Information
- Creativity
- Applicability
OBJECTIVES

To understand the role of GIS in the design process

To identify the potential and possible improvements for GIS courses in the design field

To recognize the potential and possible improvements for GIS technology
• LA 438 GIS Application to design projects
• Student projects
• Findings
LA438 GIS APPLICATION TO DESIGN PROJECTS

- An introductory GIS course in the landscape architecture department
- Assisting students with design background to integrate and apply basic GIS skills into their design projects
- Developing critical thinking and logical design decisions
- Average 15 students for 4 hours each class, two classes per week (8 hours per week)

- Course structure
 - Lectures, demos, and in-class exercises (6 wks)
 - Project (3 - 4 wks)
LA438 TOPICS

- Base Map
- Feasibility Study
- Demographic Study
- Use of Digital Elevation Model and Lidar Point Cloud
- Spatial Analyst and Hydrology Tools
- Soils
- Google Earth and ArcScene
- Visualization and communication
LA438 ACTIVITIES

• Integration with other design courses
• Collaboration with similar courses
• Desk critiques
• Client and expert presentations
• Exhibits and GIS related activities
There are a variety of land types and elevations within our site boundaries, as well as many neighboring land parcels that we plan to purchase in the future.

Our main design challenges will be working around the existing features intersecting the land of our site, such as railroads, roads, and levees.

The impact of the neighboring landowners must also be taken into consideration. We now must think about how to best utilize the existing topography and land conditions while simultaneously preparing for sea level rise.
LIDAR POINT CLOUD AND LAS DATASET

OVERVIEW OF PROPOSED PATH AND ALTERNATIVES

PROPOSED PATH

Lidar data can be used to determine vegetation-based
end points and other distinctive points in a LAS dataset.
The following photo graph shows the proposed path alongside
for alternative options:

- PROPOSED PATH
- ALTERNATIVE PATH 1
- ALTERNATIVE PATH 2
- VIEWSHED

Image credit: Brandon Rommos
LA438 FOCUS

• A tool for design decisions

“Any place is the sum of historical, physical and biological processes, that these are dynamic, that they constitute social values, that each area has an intrinsic suitability for certain land uses and finally, that certain areas lend themselves to multiple coexisting land uses… A planning process that is rational, explicit, replicatable…”

Ian L. McHarg ‘Design with Nature’
“I discuss mapping as an active agent of cultural intervention. Because my interests lie in the various processes and effects of mapping, I am less concerned with what mapping means than with what it actually does. Thus, I am less interested in maps as finished artifacts than I am in mapping as a creative activity. It is in this participatory sense that I believe new and speculative techniques of mapping may generate new practices of creativity, practices that are expressed not in the invention of novel form but in the productive reformulation of what is already given. By showing the world in new ways, unexpected solutions and effects may emerge.Mapping and contemporary spatial design techniques more generally have yet to find adequate ways to engage creatively with the dynamic and promiscuous character of time and space today”

James Corner ‘The Agency of Mapping: Speculation, Critique and Invention’
SUITABILITY

Waiting for Water:
The Healing Power of Time
by Miguel Mendez, Sasha Shebalin, and Tyler Ellison
LA438 and LA403 (A design studio)
Paso Robles depends on groundwater pumping to sustain social and economic life. However, the effects of over pumping put water sustainability at serious risk.

The students have identified three primary causes of groundwater decrease: unsustainable water consumption, insufficient recharge opportunities, and underdeveloped water infrastructure.

The project seeks to clean and recharge rainwater runoff into the groundwater basin through a set of adaptive landscape strategies.
Natural and anthropological conditions were analyzed through a feasibility metric to select a site best suited for the design of a sustainable groundwater system.

- Watershed size
- Potential urban runoff
- Maximum site area
- Current groundwater elevation
- Infiltration Rate
- Proximity to Salinas River
- Existing vegetation cover
- Proximity to community
- Proximity to city center
- Connection to existing trails
SYSTEM & PROGRAM CONCEPT

Runoff water processing follows conventional successions of sedimentation, evaporation, bioturbation and infiltration in adaptive methods that maximize site area and drainage potential. The primary neighborhood runoff clearing/drainage can hold up to 11,000 cubic feet of stormwater runoff, and are located in a highly visible location of the park. This allows many parks user to observe the method to sustainable groundwater development. All other site specific interventions are located along trails in the primary drainage pattern. Eight hundred runoff traps were identified, and all but two are now treated on-site, with suggestions for the remaining to be processed using adaptive sustainable stormwater strategies closer to the source.

Program components follow the process of water and soil key sites. Regions of capture, cleaning or groundwater infiltration. Paved and decomposed granite pathways span the area, giving various uses the ability to follow, walk, or circuit throughout. Trails are marked with informative signage explaining water systems and frequently interact with water bodies via bridges and overhangs. Located near the entrance to maximize community accessibility, playgrounds for all ages, restrooms, basketball, and multiple gathering spaces cluster between topographic elements, so the flow field, and the cleared neighborhood runoff fields. Gathering spaces are accommodated with shade structures, picnic areas, and seating in the form of picnic tables, classic benches, or “conversation” benches. A series of intimate space waves throughout the park, taking advantage of many of the vintage zones and views. Some are located within the seasonal garden which is planted with ephemeral and herbaceous perennials that sequentially bloom or differ each aesthetically. Interest throughout the year. As a conclusion for visitors who have traversed through the most developed and active site areas, a nature based art, and water infiltration cell can be discovered at the northwest corner, serving as the contemplative end of the community water system experience.

SITE STRATEGIES

CURRENT CONDITION

PROPOSED CONDITION

BIO-REMEDIFIED RUNOFF

HIGHWAY 66

INTERVENTIONS
REFORMATION

ZONING:
IMPACT ON CITY OF LOS ANGELES
by July Aung and Jiyu Kang
LA438 and LA437 (3D Representation class)
The style of virtual object was strategically chosen to show the correlation between the zoning codes, crime rates, income level, and population density. Thus, virtual object answers and reflects how zoning perpetuates such elements.
WATERSHED AND TERRAIN MODIFICATION

Baywood Basins Park
by Daniel Shafir-Schorr
LA438 and LA403 (A design studio)
The Morro Bay Watershed

The Morro Bay watershed encompasses one of the largest and least disturbed estuaries remaining on the California coast. Where the watershed discharges into the bay a unique estuarine habitat is formed. It serves as an important migratory stop for many birds and the estuary and surrounding watershed is home to several severely endangered endemic species.

However, the estuary has been suffering from negative environmental impacts associated with human development in the watershed. Agriculture and grazing lands release excess nitrogen and nutrients into the streams, which flow through the watershed and into the bay. Runoff from the surrounding towns of Baywood - Los Osos and Morro Bay release toxic heavy metals, hydrocarbons, and chemicals. Sedimentation from erosion has been a recurring problem, filling up parts of the bay and converting once healthy estuarine habitat into marshes and riparian woodland. These factors degrade the health of the estuary and threaten the sensitive ecosystems that it supports.

This project’s focus will be to analyze the watershed’s conditions, select a focus site, and to explore develop strategies and programs on site to help mitigate the negative impacts that are affecting the bay.
Agricultural Lands
Creek Nitrate Levels

This map shows the streams that are heavily impacted by high nitrate levels.

The most heavily impacted areas are most of Chorro Creek and areas of Warden Creek. They correspond directly with zones of intense agricultural and pasture land.

Methods to reduce nitrate loads include reducing excess fertilization and putting up cattle fencing around streams in conjunction with providing alternate sources of water for grazing livestock.

Dissolved Oxygen Levels

Dissolved oxygen levels spot checked in the bay show depleted levels throughout most of the bay and severe depletion levels at the south end. This is in part due to the natural formation of the bay at that end but human activity exacerbates the situation.

Warmer water holds less dissolved oxygen and the increased sedimentation decreases water depth and raises water temperatures. This combined with excess nutrients from agriculture promoting algae growth promotes dead zones of low oxygen content.
Hydrology Tools

* Stream Definition: Use Map Algebra

* Flow direction

DEM

Flow Direction

Sink

Are there any sinks?

No

Depressionless DEM

Flow Accumulation

Stream Order

Stream To Feature

Stream Link

Apply threshold

Yes

Fill

Flow Length

Snap Pour Point

Watershed
Flow Accumulation
Stream to Feature
Basin Formation

- Watershed C: 278 acres
- Watershed B: 100 acres
- Watershed A: 128 acres

Total:
- 6.95 acre Basin & Swale
- 2.5 acre Basin
- 2.56 acre Basin
Existing Topography
Re-Graded Topography
SURVEY

• What problem did you solve with GIS?
• What types of geospatial analysis did you use?
• What are your findings or results?
• Advantages of GIS in Design
• Challenges of GIS in Design
FINDINGS
Advantages of GIS in Design

• Base map development to scale
• Understanding of site conditions – site analysis
• Understanding of spatial relationships
• Methodical and rational process
• In depth research and site selection
• Data driven design
• Interactive and visualization of patterns and systems
• Broad area coverage – almost every city and town contribute to the data
FINDINGS

Challenges of GIS in Design
- Finding and acquiring data applicable to design projects
- Quality of data
- Correlation between data and design
- Handling of data
- Easy to forget importance of non-spatial information

GIS Program Challenges
- Understanding of the broad range of tools and steps
- Computer system slow down and network connection
- Program configuration: layout capabilities, functions, icons, etc.
- Unstable conversion process
WORKS CITED:

THANK YOU
&
QUESTIONS and COMMENTS