Teaching Big Data Analytics and Geospatial Data Science

Dr. Ming-Hsiang Tsou

Email: mtsou@mail.sdsu.edu, Twitter @mingtsou
Director of the Center for Human Dynamics in the Mobile Age
Professor, Department of Geography, San Diego State University
What is “Data Science”?

Major “Knowledge Domain” in Data Science
(from O'Neil, C., & Schutt, R. (2013). Doing Data Science: Straight Talk from the Frontline. O'Reilly Media, Inc.)

- Computer science
- Mathematics
- Statistics
- Machine learning
- Communication and presentation skills
- Data visualization
- Domain expertise

- We need to add “GIScience and Geospatial Technology” in HERE!!!

No one person can be the perfect data scientist, so we need teams.

Figure 1-3. Data science team profiles can be constructed from data scientist profiles; there should be alignment between the data science team profile and the profile of the data problems they try to solve.
Veracity (the truth of data) – What is this?

Can Big Data represent 100% of our Real World? NO! N ≠ all

Image source: http://www.ibmbigdatahub.com/infographic/four-vs-big-data
Geography (place and time) is the KEY for Understanding and Integrating Big Data

(Tsou and Leitner, 2013)
Knowledge Discovery in Big Data (KDBD) framework

Place

= Personalized locations and dynamic geometry (sense of place), Fuzzy boundary (dynamics), human-centered (task-oriented, functional)

London, my home town, San Diego, UCSD. (Social Media Content/Conversations).

Space

= Basic Geometry (point, lines, polygons) defined by coordinates, precise boundary and locations, mathematical/computational, traditional Geographic Information Systems (GIS). San Diego (lat/long) a point or a polygon (map scale).

Great History of Big Data Processing and Analysis in GIS and Geospatial Analysis Applications

- **U.S. Census data** since 1790 – present (every 10 years).
- **Land use** and land cover survey data (since 1930s by Ludley Stamp, UK).
- **Remote Sensing and Satellite Imagery** Analysis in 1960s (Cold War) and after.
- Environmental **Sensor** data (1970s, Low-Angle Radar Tracking).
- **GPS** data analysis after 2000 (removing the selective availability signal to improve the accuracy in 2000).
- **Human dynamics data** (social media, mobile devices).
Comparing **GI Science** Programs/Curricula and **Data Science/Data Analytics** Programs/Curricula

The Overlap in Curricula

GI Science
- Cartography
- GIS Databases
- Remote Sensing
- Spatial Analysis
- GIS Programming
- Data Visualization
- SQL and NOSQL Databases
- Computer Vision
- Statistical Data Analysis
- Data Science Programming

Data Science

GI Science + Data Science = Geospatial Data Science
What is “Geospatial Data Science”?

Geospatial Data Science as a transdisciplinary field to extracting knowledge and insight from geospatial big data using high performance computing (HPC) resources, spatial and non-spatial statistics, spatiotemporal analysis models, GIS algorithms, machine learning methods, and geovisualization (mapping) tools.

The derived geospatial knowledge and insight can facilitate spatial thinking and problem solving for various applications, and enable the exploration of new scientific theories.

Uniqueness of Big Data (comparing to traditional GIS and RS data)

- Most of them are **points** (due to the collection from sensors and mobile devices, smart phones).
- Most of them have **trajectory data** and **time series analysis** (However, traditional GIS software are lack of spatiotemporal analysis function).
- **Unstructured** data (No-SQL databases, social media data) (traditional GIS data are “relational databases” and “well-structured”).
- Multi-level and **dynamic scaling** (how to aggregate point data into meaningful scale level? (census block, zip codes, county, city boundary?) (traditional GIS data are at single scale)
GIScience
- Map projection and coordinate systems
- Remote Sensing Sensors and platforms
- Spatial Analysis (Buffer, Overlay, GWR)
- GIS Software (ArcGIS, QGIS, OpenLayers).
- Web Map Servers (ArcGIS online)

Data Science
- Text mining and linguistic analysis (topic modeling, latent Dirichlet allocation (LDA)).
- Social network Analysis
- Cloud Platforms (EC2) and HPC (Hadoop and Spark).
- NoSQL databases (MongoDB)
- Machine learning (Supervised machine learning vs. Unsupervised machine learning).

Maps and Visualization
- Database Management
- Image Analysis, Identification, and Recognition
- Statistical methods (clustering, classification, hotspot analysis).
- Programming (Pythons, R, JavaScripts)
- Web Applications (Mapping Service APIs and Data APIs)
Improve current GIScience Courses with Data Science and Data Analytics Methods and Tools.

- **Machine learning** and **time series analysis** in **Spatial Analysis courses**
- **R** and **Pythons with Data analytic libraries** in **GIS programming courses**.
- **Tableau and other Business Intelligent (BI) Software** in **Cartography courses**.
- **NoSQL databases** (MongoDB) in **GIS database courses**
- **Text mining methods** and **social network analysis** in **GIS application courses**
- **Critical thinking and data privacy issues** in **GIS Design courses**.
- **Mapping APIs** (leaflet, MapBox, CartoDB) and **Data APIs** (social media) in **Web GIS courses**.
Amazon Educate Starter Account

AWS Account: $100 in credits at member institutions; $40 in credits at non-member institutions. (Need credit card info to create an account...).

AWS Educate Starter Account: $75 in credits at member institutions; $30 in credits at non-member institutions *(Students don’t need to provide their credit card info!!!)*

Ask your University’s IT staff to apply for “member institution” to get benefit for your students....

When students register the Educate Starter Account using the University’s email address, they will automatically get the benefit.
Future Plan:
Adopting ArcGIS Enterprise for Big Data Analytics

GeoEvent Server (real time data + IOT), **GeoAnalytics Server** (Big Data Visualization), **Insight for ArcGIS** (Data Analytics and Visualization).
GEOG 594 Big Data Science and Analytics Platform (at San Diego State University)

Overview: This course introduces state-of-the-art computational platforms, tools, and skills for big data science and big data analytics with numerous real-world case studies. The big data field provides untapped potential for discovering and analyzing complex problems faced by humankind, including business analytics, disease outbreaks, traffic patterns, urban dynamics, and environmental changes. This class will introduce big data platforms (Amazon EC2) and key concepts (cloud computing, virtualization, information privacy, and crowd sourcing). Students will learn to how to use Amazon EC2, MongoDB, R, Gephi, ArcGIS Online, and Tableau to conduct big data analytics. The course will provide basic introduction to big database management related to NoSQL databases, Hadoop and MongoDB. This course will have both the hands-on training of analytics tools and computer skills, as well as the fundamental concepts for big data science with critical thinking. Students will have the opportunity to create their own big data platform on Amazon EC2 virtual servers, manage their own databases in MongoDB, and access and collect big data from sources of their choosing (e.g., Twitter data and business datasets).
3. Develop New Courses for Both Geospatial Technology and Data Science Programs.

- **Spatiotemporal analysis and trajectory analysis** of point data (GPS and social media data), clustered data, and sensor data.
- **Spatial social network analysis** (combing spatial analysis and social network analysis).
A new **Big Data Analytics** program at SDSU in Fall 2019 https://big.sdsu.edu

- Integrating GIScience with Data Science
- Focus on real-world data analytics and case studies.

Curriculum

The Master of Science degree in Big Data Analytics consists of the completion of 36 units, including the following courses:

- **Required Core Courses (12 units)**
 - BDA 500 / GEOG 594 Big Data Science and Analytics Platforms (3)
 - BDA 572 / LNG 572 Python Scripting for Social Science (3)
 - BDA 596 / MIS 596 Enterprise Data Management (3)
 - BDA 623 / BA 623 Statistical Analysis (3)

- **Electives (6-12 units)**

- **Research (3-6 units)**

- **Capstone and Culminating Experience (3-6 units)**

Faculty

Ming-Hsiang Tsou, Ph.D.
Program Director

- **Office:** 313C DP
- **Phone:** (619) 594-0205
- **Email:** mtsou@mail.sdsu.edu

Dr. Tsou is a professor in the Department of Geography and the director of the Center for Human Dynamics in the Mobile Age (HDMA). He received a B.S. (1991) from National Taiwan University, an M.A. (1996) from the State University of New York at Buffalo, and a Ph.D. (2001) from the University of Colorado at Boulder, all in Geography. His research interests include Human Dynamics, Social Media, Big Data, Visualization, Internet Mapping, Web GIS, Mobile GIS, Cartography, and K-12 GIS education.
Geographic Information Science → Geospatial Data Science

- Data (raw materials)
- Information (processed, human readable)
- **Knowledge and Insight** (Actionable – decision making)

- We need to provide the education training to teach students how to convert data to information, and information to knowledge and insight.
Geospatial Data Science = Transdisciplinary

We will transform Data Science and Information Technology in the age of Big Data -- from isolated “instruments” (disciplines) into an epic “orchestra” (collaboration).
Thank You Q & A

Director: Dr. Ming-Hsiang (Ming) Tsou
mtsou@mail.sdsu.edu
Twitter @mingtsou

Funded by
"The National GeoTech Center 3.0: DUE 1700496 http://www.geotechcenter.org/