February 9–10, 2015 | Washington, DC

ArcGIS Pro: What's New in Analysis

James Sullivan

What is analysis?

Analysis transforms raw data into information or knowledge.

Spatial analysis does this for geographic or spatial data.

Who? What? Where? When? Why?

Spatial analysis answers "where" questions.

Where is the best location for a new community center?Where is an area with high crime rates?Where has the landscape changed in the last 10 years?

Analysis in ArcGIS Desktop

Make analysis easy

Single tools that run common workflows like summarizing within an area, aggregating points, etc.

Make it fast

More tools using parallel processing Continual improvements to vector overlay

With better/more correct analysis results Better distance calculations/geodesic

Analysis in ArcGIS Pro

ArcGIS Pro provides incredible capabilities for performing analysis in 2d and 3d. Performance (~20%) + scalability + visualization

Geoprocessing Raster analysis Network analysis 3d analysis Statistical analysis

Analysis in ArcGIS Pro

The ANALYSIS ribbon tab provides access to

Gallery of powerful analytic tools Suite of all geoprocessing tools Python command line ModelBuilder Network analysis Imagery processing

Geoprocessing

Processing geographic data

- 4 ×

- 🕂

- 🛨

Properties

Ξ ?

What is geoprocessing?

Geoprocessing is a rich suite of tools for processing geographic data. Spatial analysis + manage GIS data

A typical geoprocessing tool processes input data and produces an output.

E.g. Buffer a map layer to create areas around the layer's features

You can model and automate geoprocessing workflows using ModelBuilder or Python.

Geoprocessing in ArcGIS Pro

Familiar user experience with some key productivity improvements.

Most tools, models, and Python scripts that work in ArcMap will work in Pro. ArcObjects-based custom tools are not supported.

Analyze for Pro tool checks models and scripts for unsupported tools, data, and Python code.

Geoprocessing pane

You find and run geoprocessing tools in the Geoprocessing pane. A dockable pane where you can... search for a specific tool see favorite and recently run tools browse a list of all tools

After finding the right tool, the tool dialog opens in the pane.

Your map remains the focus.

Create a geoprocessing workflow

Make a Python script tool that runs Python code To get started, run the tool in Pro, then *Copy Python command* and paste into script file.

●●●●●●	Art/EES Pro - Wind and Wave Suitability - Wint Suitability (Complete)	? _ @ ×
PROJECT MODELBUILBER	INSERT ANALYSIS VIEW SHARE 🖞 drew! (Analysis and Geopre	icessing Team) * 👄
Save State	Vulidate Run	
Fie View Mode	lun	
Colomb	* Wied Statability (Complete) *	Project Geoprocessing

Build a model of your workflow using ModelBuilder.

Connect tools and data to form a diagram that represents your workflow.

GeoprocessingDemo

oprocessing	≁ İ ×						
Spatial Join							
rameters Environments							
arget Features California Urban Areas 🗾 📑							
oin Features CalFresh Vendors							
lutput Feature Class CA_UrbanAreas_SpatialJoin							
oin Operation Join one to one	•						
Keep All Target Features							
ield Map of Join Features	3						
Output Fields 🕂	Source Properties						
UA_ID	Merge Rule : First 🔹						
NAME	Base Layers\California Urban						
LSAD	POP2010 -						
LSAD_DESC							
POP2010	Add New Source 🗸						
POP10_SQMI							
HSE_UNITS							
SQMI							
Shape_Length							
Shape_Area							
InSonoma 🛛 🔻							
latch Option							
ntersect	•						
earch Radius							
	Kilometers						

Run 🕟

Raster Analysis

Spatial Analyst extension

INGDOM Hamb 11 cerdam London Brussels

Raster analysis

Spatial Analyst includes 170+ geoprocessing tools.

Integrates both vector and raster spatial analysis.

Range of applications including suitability modeling, hydrological analysis, surface interpolation, and more.

Powerful map algebra language

Raster Calculator

Raster analysis

Improved user experience of tools and controls access to key raster analysis environments Cellsize, snap raster, mask, etc.

More tools use parallel processing/multi-core Reclassify, Weighted Overlay, Zonal Statistics

New tools in ArcGIS Desktop

Rescale By Function, geodesic Viewshed, and Classification

	Geoprocessing			- □ ×
RUSKERUE	We Parameters Environn	eighteo nents	d Overlay	≡ ?
THE REAL	Weighted overlay table			
TELEMAR	Input Rasters 🕂 😔	%=	Prop	perties
AUST -	rcls_bathymetry	25	Field: Val	lue 🔻
VE ST-	rcls_wind	50	Field Value	Scale Value
A 1	rcis_portdistance	10	1	1
	reis_sinpuerisity	10	2	2
			3	3
			4	4
			5	5
DENM			5	6
			8	/ o
Ĵ,			9	9
A CARLON			10	10
	Sum Of Influences	100	Scales: 1	10 -
	Output racter	100	Jeales, 1	10
	suitable_locations			
	Sum Of Influences			
NIEDERSAC				
IERLANDS TOT				
NOR DRHEIN- WE STFALEN				Run 🕟

Wind power suitability Demo

UNI TED

cerdam

London

GERN

ЛAR

Hamb

18

Brussels

Network analysis

North East Store

South East Store

Central Store

City East Store

Network Analysis

Routing / Directions Closest facility Drive-time / service areas Location – Allocation Vehicle routing problem Origin – Destination matrix

Network analysis in ArcGIS Pro

2D and 3D network analysis

Start with Analysis > Network Analysis > Service Area or Route

Contextual ribbon tab for different network analysis layers

Add locations, configure, and run

Other analysis accomplished through geoprocessing tools in Network Analyst

Network analysis services

Don't have your own network data or don't know how to use it? ArcGIS ready-to-use services

Requires ArcGIS Organizational account; credits consumed

Services use premium street network data with historical current traffic estimates and world-wide coverage.

http://logistics.arcgis.com/arcgis/services

Image: Second state of the second

Network analysis

North East Store

South East Store

Central Store

City East Store

Demo

3D Analysis

Geoprocessing - Д X (Θ) ρ. Project Tools | System Tools Image: A state of the state SD Features CityEngine Conversion 🤹 Data Management 4 🖾 LAS Dataset Change LAS Class Codes Classify LAS By Height Content LAS Points By Proximity Set LAS Class Codes Using Features Terrain Dataset 🖻 🆾 TIN Every Functional Surface Raster Interpolation 🖾 Raster Math Raster Reclass Raster Surface Triangulated Surface Visibility Construct Sight Lines Intervisibility Line Of Sight Observer Points Skyline Skyline Barrier Skyline Graph Sun Shadow Volume Viewshed Visibility

≡

3D Analyst extension

100+ geoprocessing tools for elevation surface creation and analysis, using vectors, rasters and **TIN-based models.**

Support for analysis and visualization of Lidar and point-cloud data through the LAS dataset.

Measuring distances/proximity and evaluating spatial relationships in 3D.

Volumetric and visibility analysis

3D analysis

New tools in ArcGIS Desktop

Classify LAS By Height

Lidar point classification relative to height above ground Example: characterize vertical structure of tree canopy

Locate LAS Points By Proximity

Find 3D distance between LAS points and other features or multipatch faces

Example: identify right of way encroachments such as vegetation close to power lines

LAS Point Statistics By Area

Min, max, mean, stdev of z for points within polygons Example: find max height of all LAS points within building footprints

Geoprocessing						
€	Classify LAS By Heigh	nt 🔳				
Para	meters Environments	?				
Inpu for	ut LAS Dataset ested_area.lasd	• 💾				
Defi asso	ine height breaks and Heig poiated classes	ht				
	3	50				
	4	100				
	5	200				
Use just model key points for ground						
Reclass points below ground to noise						
Reclass points above max height to noise						
	Calculate statistics					

3D Analysis Demo

Statistical analysis

T.THU

(THE)

00

Ŧ

H

.....

CHERIC LED CHERIC

นากตือ

ป้านคอ อยุสวน

11111

พระจักษณ์ รสงร

ากลาง

สมุขารสาคร

LINGANIT

98

hine

กกะก้วนวาก

Undu

12.732

手用目 (20)

นเกรินิยม

พระเภษัษอื่อ

340

unital

Die

Holm.

สถ องสิบ

be muches

บำแระกาศ

Dennania

อ.พนองเพี

3312

สามาวาท่ายวัน ออก

di muio

3 268

สมทรปราการ

Spatial and geostatistics

Geostatistical Analyst

Interactive modeling tools for creating statistically valid prediction surfaces along with prediction uncertainties.

ushima

rivama

Sukagawa

an agu ra

saka

Ishikawa

awageta

Hara

Fukushima Daiich

Iwak

Kammata

Predict between known measurements – interpolation

Off-the-shelf tools for calculating extremely accurate interpolation surfaces without configuration of statistical models.

Empirical Bayesian Kriging

No Geostatistical Wizard in first release of Pro – only the existing geoprocessing tools.

Spatial Statistics

Tools for analyzing spatial distributions, patterns, processes and relationships in 2D, 3D, and 4D (time)

Summarize key characteristics of a spatial distribution Identify significant clusters and outliers Model and explore spatial relationship through regression

New tools in ArcGIS Pro

Create Space Time Cube: Aggregates data into multidimensional data structure

Emerging Hot Spot Analysis: Identify hot and cold spot trends – new, intensifying, diminishing, sporadic, etc.

Statistical analysis

Learn more about spatial analysis

http://pro.arcgis.com/en/analysis/

February 9–10, 2015 | Washington, DC

Don't forget to complete a session evaluation form!

February 9–10, 2015 | Washington, DC

Print your customized Certificate of Attendance!

Printing stations located on L St. Bridge, next to registration

February 9–10, 2015 | Washington, DC

GIS Solutions EXPO, Hall D

Monday, 12:30pm - 6:30pm

Tuesday, 10:45 AM-4:00 PM

- Exhibitors
- Hands-On Learning Lab
- Technical & Extended Support
- Demo Theater
- Esri Showcase

February 9–10, 2015 | Washington, DC

Networking Reception:

National Museum of American History

Tuesday, 6:30 PM–9:30 PM Bus Pickup located on L Street

February 9–10, 2015 | Washington, DC

Interested in diving deeper into Esri technology?

Add a day to your Fed GIS experience and register to attend the Esri DevSummit Washington DC. Stop by the registration counter to sign up.

Understanding our world.