www.mak.com info@mak.com 617-876-8085

Paper # 1015

GIS-Enabled Modeling and Simulation (GEMS)

10 January 2007

MÄK

TECHNOLOGIES

Tom Stanzione & Kevin Johnson tstanzione@mak.com, kevinj@mak.com

Overview

- Objectives Technical Challenges Terrain Subsystem Requirements Analysis Design Prototype
- MÄK GIS-Link
- Conclusions and Future Work

TECHNOLOGIES

Sponsor

 This work is funded by the US Army Topographic Engineering Center, Ft. Belvoir, VA

Government POC

Dave Lashlee

▶ (703) 428-7133

J.David.Lashlee@erdc.usace.army.mil

Contract # W9132V-06-C-0018

TECHNOLOGIES

Objectives

- Enable modeling, simulation, and visualization systems to operate directly on GIS-based terrain
- Eliminate need to for time-consuming and expensive conversion to specialized formats
- Use same data used in operational C4ISR systems (C/JMTK)
- Enable mission planning, mission rehearsal, and predictive situation awareness

TECHNOLOGIES

Terrain Generation for M&S Current Practice

TECHNOLOGIES

GIS-Enabled M&S

TECHNOLOGIES

THE NU

System Components to be Developed

TECHNOLOGIES

©MÄK Technologies, Inc.

Development Items

- ArcGIS/ArcObjects-based Terrain Subsystem
 - APIs to terrain data for CGF systems
 - Caching mechanisms
 - APIs to terrain data for 3D visualization (Option)
 - APIs to analysis routines (Option)
 - Dynamic terrain capabilities (Option)
- MÄK GIS-Link
 - HLA, DIS, and TENA data display on C/JMTK displays
 - GIS data to simulations
 - Dynamic terrain, analytics, semantic information

TECHNOLOGIES

Technical Challenges

- Overcoming performance bottlenecks
 - ESRI ArcGlobe already performs fly-thrus of GIS data
 - Caching
 - More performance enhancements coming
 - ArcGlobe Server
 - ArcGIS Dynamic Display
 - Having ESRI as subcontractor will facilitate this
- Access to analytical routines
 - API definition
 - Time delays that may arise

TECHNOLOGIES

Terrain Subsystem Tasks

- 1. Work with TEC to develop requirements
- Develop a system and software design for year 1 development
- Implement terrain subsystem for CGF and 2D viewer applications
- 4. Integrate and test terrain subsystem with VR-Forces

TECHNOLOGIES

Requirements Analysis

- M&S terrain data
 - Elevation
 - Features
- GIS terrain data
 - Existing C4ISR data sets
 - Geodatabase schemas
 - Theater Geospatial Database (TGD)
 - Interfaces for M&S data
 - VR-Forces, OneSAF Testbed, Delta 3D

TECHNOLOGIES

CGF Terrain Databases

- D Visualization
 - Abstract representation (maps)
 - Realistic representation (imagery)
- Reasoning
 - Geometry and attribution of elevation and features
 - Data structures in memory
 - Uses:

TECHNOLOGIES

- Vehicle placement
- Movement algorithms
 - Path planning
 - Obstacle avoidance
 - Vehicle dynamics
- Line of sight
 - Targeting
 - Communications

CGF Terrain Databases

- Terrain Skin
 - Grid or TIN of elevation values
 - May or may not be stored as polygons
 - Attributes
 - "Soil Type"
 - Water
 - Mobility Characteristics
- Features
 - Point, Lines, Areas
 - Attributes
 - Width, height, type, ...
 - 3D Models
 - Typically associated with point features
 - Building models
 - Varied fidelity
 - Overturned shoe boxes to complex structures with interior details
- Spatial organization
 - Find all terrain information around a location quickly
 - Grid-based

TECHNOLOGIES

- Hierarchical
 - Quad trees

GIS Terrain Data

- Elevation Data
 - Raster
 - Triangulated Irregular Network (TIN)
 - Terrain Feature Class (GeoDB)
 - Polygon Z Feature Class (GeoDB)
- Feature Data
 - Shape Files
 - Multi Patch (GeoDB)
 - Polygon, Polyline, Point Feature Datasets (GeoDB)
- Geodatabase
 - Personal
 - File

TECHNOLOGIES

2007 ESRI FedUC

©MÄK Technologies, Inc.

System and Software Design

- System level component designs
- Interface design
- Functional and performance characteristics
- Performance improvements
- Caching mechanisms

GIS vs GDB Performance

- Three main terrain calls:
 - ClosestIntersection Elevation
 - Intersect (1) Horizontal LOS
 - Intersect (2) Vertical surfaces intersection
- Scenario
 - 10 moving ground vehicles, 3 moving amphibious vehicles, 1 moving surface vehicle, 4 moving air vehicles and 16 non moving target vehicles
- Average length of time in each call (microseconds)

		GDB w/ soil type	TIN	Raster	TIN w/ soil type
1	ClosestIn tersection	37	94	25	298
	Intersect (1)	54	705	2006	N/A
	Intersect (2)	62	407	691	N/A
					ISRI FedUC

TECHNOLOGIES

VR-Forces using GIS Terrain Demonstration

MÄK GIS-Link

 Provides underlying components to enable ArcGIS-based applications to connect to HLA/DIS/TENA exercise & visualize real-time data

- ArcMap rapidly updating symbology
- ArcGlobe dynamic 3D models
- Comprised of underlying ArcObjects that easily integrate with other ArcGIS Engine components
- Utilizes dynamic display capabilities in ArcGIS
 9.2

TECHNOLOGIES

MÄK GIS-Link...Continued

- Supply building blocks to …
 - Support HLA/DIS/TENA simulation interoperability standards
 - Enable visualization of simulation specific objects
 & interactions
 - Provide higher-level GUI components for viewing & configuring simulation specific functionality
- C/JMTK & ArcGIS conformant way to easily incorporate HLA, DIS, or TENA data

TECHNOLOGIES

MÄK GIS-Link Product

- Available in 3 forms
 - Extension for ArcMap (*Map-Link*),
 - Extension for ArcGlobe (Globe-Link), &
 - ArcObjects available for use with other ArcGIS Engine components
- Comprised of
 - ArcObjects that wrap VR-Link functionality
 - ArcObjects for GUI components & display capabilities
 - ArcMap & ArcGlobe extension toolbars

Current Status

- ArcMap release candidate
 - Connect to DIS, HLA 1.3, HLA 1516, or TENA exercise
 - Define layers, either manually or automatically
 - Display entities and aggregates using MOLE symbology
 - Display fire & detonate interactions
 - Display target-to-shooter lines
 - Dialogs for

TECHNOLOGIES

- Entities by layer
- Simulation-specific attributes
- Entity specific information
- Aggregate specific information

[©]MÄK Technologies, Inc.

Current Status

- ArcGlobe release candidate
 - Display entities as OpenFlight models
 - Display fire and detonate interactions as animated sequences
 - Display target-to-shooter lines
 - Support attach modes to entities
 - Compass
 - Mimic
 - Support ArcGlobe "identify" tool

TECHNOLOGIES

Map-Link Prototype

MÄK

TECHNOLOGIES

Conclusions

- Early prototyping suggests feasibility of GIS terrain for M&S
- M&S using operational data facilitates embedded training in C4ISR systems
- Can still benefit from high fidelity M&S terrain databases
 - Convert to GIS formats as needed
 - Use automated content generation from terrain database generation systems
- MÄK GIS-Link provides interoperability between C4ISR and M&S domains

TECHNOLOGIES

Future Work

- Complete CGF Terrain Subsystem
- > 3D Visualization Capabilities
 - Extend terrain subsystem
- Browser-based Visualization Capabilities
 - Extend GIS-Link for GIS servers
- Access to GIS-based Analytics and Terrain Reasoning
 - Extend terrain subsystem API
 - Develop framework
- Dynamic Terrain
 - Extend terrain subsystem and GIS-Link
 - Data management and distribution

TECHNOLOGIES

