Enabling the Image Analyst (IA) to use the geodatabase

Rick Racine, BAE Systems, Reston, VA
Stewart Walker, BAE Systems, San Diego, CA

2610020508 EXPORT CONTROL DATA: This presentation is approved for export. The actual product and its technical information is governed by the U.S. International Traffic in Arms Regulations (ITAR) or Export Administration Regulations (EAR). The product or technical information about this product must not be transferred to a foreign person/entity without proper authorization of the U.S. Government. Violations may result in administrative, civil or criminal penalties.
Outline

• Introduction
 • Vision
 • Concept
 • Solution
 • GIS background
 • Enhancing IA tradecraft

• SO CET GXP®: Spatial Enabled Exploitation (SEE)
 • Basics
 • Workflow

• SO CET SE T®: SO CET for ArcGIS®
 • GGI workflow
Introduction
Vision

- IA tradecraft undergoing dramatic transformation as benefits of geographic databases become apparent;
- Geographic databases support:
 - data sharing
 - frequent use
 - constant updates
- These advantages allow a new user community, IAs, to benefit from GIS
Concept

- Connect IA software to ESRI geodatabase
 - Geographic features stored with accurate ground coordinates
 - Information queried and viewed against new imagery, facilitating temporal analysis and change detection
 - Feature attributes populated automatically or manually
Solution

• BAE Systems’ SOCET GXP with SEE
 • Accesses geodatabase using ArcGIS Engine
 • Sensor modeling capabilities position features accurately
 • Supports wide range of government and commercial image sources
Solution … 2

- BAE Systems’ SOCET GXP with SEE
 - Intelligence observations collected over time available to all IAs in organization through shared geodatabase
 - No more sifting through historical textual reports to answer geospatial intelligence questions
 - Uses production tested SOCET for ArcGIS technology
GIS background

- Photogrammetry used to collect information in ground coordinates for 100 years
- Long history of interfaces between photogrammetric workstations and GIS software
 - Simple interfaces to analog instruments in 1970s
 - Interfaces to analytical plotters in 1980s, with some analytical plotters purpose-built as GIS workstations
 - Interfaces to digital photogrammetric workstations in 1990s
- IA software has tendency to collect information in image coordinates
 - Digital equivalent of drawing on transparent overlay with Chinagraph
 - Vectors collected on one image don’t fit to another image
- Little history of interfaces between IA software and GIS software
 - No interfaces to analog light tables and zoom stereoscopes
Enhancing IA tradecraft

• Current textual intelligence approach useful for reporting but not efficient for rapid analysis or collaboration
• Vectors are collected during IA product creation but are not suitable for quick retrieval based on temporal and geographic attributes
• Attributed vectors store detailed information on objects, enabling users to answer intelligence questions such as
 • How many active Surface-to-Air Missiles (SAMs) are within 100 km of a specific location?
 • For a specified date range and region, find all sites where SAMs were deployed
• Store pertinent attributes relating to features, including:
 • Dimensions, history, collection date and time, quality, precision, source, and originator
• IAs from multiple organizations express same requirement for storing intelligence observations as attributed features for subsequent query and analysis
SEE
Solution for the IA
Basics

- Concept based on 2005 paper *Advocating for Spatial Storage*
 - Concept originated by NGA GeoScout GKB-P Program
 - NGA ASDI program implementing SEE concept
- NGA vision: “store basic intelligence data and information in GIS-like (vector) form”
 - Originally known as Palette Driven Exploitation (PDE)
 - Promote vector-based information capture into image analysis workflow
 - Promote collaboration between Geospatial Analysis (GA) and Intelligence tradecrafts
 - Enable various Intelligence tradecrafts to store data via common methods
 - Enable reuse of data to harness synergy that should be occurring between tradecrafts
 - Vector-based intelligence information storage facilitates transformation of current geospatial intelligence capabilities (text reporting)
- IA/GA merge is part of raison d’être of NGA
SEE workflow: geo-registration through triangulation

• To support NGA’s SEE initiative, SOCET GXP performs rigorous geo-registration for accurate collection of features in ground space
 • Automated triangulation for novice user
 • Interactive triangulation for advanced user
 • Triangulation involves rigorous image-to-ground and ground-to-image transformations
 • Allows adjustment of sensor position without warping imagery
• Pre-triangulated images such as CIB®* or DPPDB* can be used as control sources

*DPPDB and CIB® Format Generation
[SOCKET SET Digital Point Positioning Data Base Format Production Module (DPPDB) [which uses MIL-PRF-89034, March 1999 format specifications] and SOCKET SET Controlled Image Base® (CIB) Format Production Module [which uses MIL-PRF-89041, 15 May 1999 format specifications] are currently under U.S. Department of State evaluation for export jurisdiction and are temporarily unavailable for customers outside the United States.]
SEE workflow: geo-registration through triangulation … 2

- Derived from SOCET SET
- User controls adjustment of image parameters
- User specifies control images, control points and terrain files for triangulation
- User controls tie point patterns for automated point measurement
 - Interactive tie point measurement available
- User controls strategies for solution
SEE workflow: geo-registration through triangulation … 3

Control images

Today’s image

Triangulation

Today’s image geo-registered

Accurate products and features

Tomorrow’s image

Triangulation

Tomorrow’s image geo-registered
SEE workflow: feature collection to geodatabase

- Analyst connects to ESRI multi-user or personal geodatabase
 - Also connects to SOCET SET or SOCET GXP feature database
 - Style sheet or ArcMap™ document controls feature properties
- Geodatabase appears in SOCET GXP Workspace Manager
 - User drags feature classes of interest on to images in Multiport viewer
 - Multiple geodatabase connections allowed
SEE workflow: NGA feature extraction specification

• User community can define a geodatabase schema specific to intelligence reporting needs or use existing schemas
 • NGA ASDI and GKB-P defining schemas for the IA user
• Geodatabase and schema can be created by administrator for IAs or alternatively, use existing
SEE workflow: NGA feature extraction specification … 2

- SOCET GXP and SOCET SET provide FACC+ schema and new NGA NFDD and DFDD schema
- DFDD information at https://www.dgiwg.org/FAD/
- As in SOCET SET, new schemas can be created in SOCET GXP that comply with NGA specifications
SEE workflow: feature creation and attribution

- Using ArcGIS Engine, users attribute features directly within SOCET GXP without using ArcMap canvas
- IAs record intel observations by adding new features or editing existing ones
 - User simply selects desired feature class and draws it
SEE workflow: feature creation and attribution … 2

- Feature appearance controlled by style sheets
- Features are drawn on image with automated attribution
 - Attributes can also be added manually
- Attributes can be queried to answer intel questions, for example
 - Facility outlines, harbors, beach landing zones, and mobile assets are recorded to geodatabase
SEE workflow: product generation

- Standard annotated IA template products created in many formats
 - NITF, GeoTIFF, GeoPDF, JPEG formats
- Features collected by IA go directly into ESRI geodatabase for enterprise sharing and query
- Attributed shapefiles can also be created for those with no GIS access
- Analysts query geodatabase to view only features of interest
SEE workflow: Google™ Earth connection

- Selected features with attributes are transferred from SOCET GXP into Google Earth as KML features
- Current imagery also sent into Google Earth
- Attributed features can also be sent to Google Earth using attributed shapefiles if ESRI geodatabase is unavailable
- Promotes enterprise sharing of image and attributed feature data via Google Earth
SEE workflow: attribute query

- To access the power of the geodatabase, the IA has to be able to query the data in a flexible manner
 - Answer intel questions using queries
- Attribute, spatial, and temporal queries can be combined
- Query on any feature attribute for a class
- Results loaded in Results list tab and SOCET GXP workspace for easy visualization
SEE workflow: spatial query

- Query based on defined area
- Spatial tab allows specification of boundary
 - Draw boundary on image
 - Use images as boundaries
 - Use current view of image
 - Use feature to define boundary
SEE workflow: temporal query

- Visualize changes over time
- Select Temporal tab
 - Date Range
 - On or Before a date
 - On or After a date
- Features that match temporal criteria can easily be visualized on image
SOCET for ArcGIS
Solution for the GA
SOCET for ArcGIS for the GA

- Used by NGA and its GGI contractors to collect 3D features from stereo imagery into ArcGIS efficiently
- User can exploit ArcMap ArcEditor™ tools or SOCET SET tools for feature collection and editing
- ArcGIS users see practically no photogrammetry once system is initially set up
- Extends 2D ArcGIS into true 3D environment
- Tools optimized for 3D feature extraction, editing, and automatic attribution
SOCET for ArcGIS: components

- **ESRI ArcMap**
 - ArcMap edit tools

- **SOCET SET**
 - Stereo viewing and accurate geopositioning
 - SOCET SET Sketch edit tools
 - Processing for database entries such as topology
 - Functions that interact with geodatabase store/retrieve

- **Geodatabase**
SOCET for ArcGIS: feature extraction

- 3D features collected from SOCET SET stereo viewport directly into ArcGIS geodatabase

- All ArcMap ArcEditor tools including customer tools work within this true 3D environment
SOCET for ArcGIS: feature extraction tools

- A rich set of tools for 3D feature extraction, editing, and automatic feature attribution
SOCET for ArcGIS: example of GGI workflow

• Uses versioned SQL database with ArcSDE® connection to SOCET for ArcGIS
• Each extractor populates same geodatabase with QC in place
• Database is populated by SOCET for ArcGIS in tandem with ESRI PLTS and other QC tools
 • Can auto populate angle of orientation (AOO)
 • Can populate height automatically using a DEM
SOCET for ArcGIS: advantages of GGI workflow

- Database such as Oracle or SQL Server does not limit database size
- ArcSDE connection allows for versioning
 - Dataset can be worked by multiple users at the same time
 - Instrumental in shortening QA/QC timelines
 - Data does not have to be completed before checks and edits can be made
 - Edge-matching issues greatly reduced due to multiple users viewing dataset in its entirety at the same time
- Dataset whole from beginning to completion of the project — no merging
- Finishing procedure time reduced due to elimination of data migration — no merging
SOCET for ArcGIS: GGI workflow — quality control

• SOCET for ArcGIS opens up new QA/QC capabilities that SOCET SET Feature Extraction alone does not possess
• QC scripts run by individual extractors on limited portions of dataset or by production manager on entire dataset
• Eliminates finishing and QA/QC limitations associated with isolated databases
SOCET for ArcGIS: GGI workflow – conclusions

• Production times greatly reduced
• Extractors receive more timely feedback on their data, improving their error ratios
Contact information

Rick Racine
(703) 668-4093 or (800) 316-9643 x3
 cell: (703) 472-1168
rick.racine@baesystems.com

Dr. A. Stewart Walker
(858) 592-1764
e-mail stewart.walker2@baesystems.com
www.baesystems.com/gxp