Using GIS Analysis to Estimate MEC Clearance Costs
Introduction

- Project Objectives
 - Conduct munitions and explosives of concern (MEC) military range reconnaissance and site characterization (RECON) in support of planned military range construction activities
 - Produce documentation to be used in site design, construction planning, and remediation cost estimation

- Components of the RECON
 - Surveying a small percentage of the entire site (transects)
 - Estimating MEC contamination using survey results
 - Preparing written report and maps describing the findings

- Presentation will focus on GIS use
 - Managing and setting-up the project
 - Collecting necessary and relevant field data
 - Processing, interpreting, and using the results
 - Evaluating the accuracy of the estimating model
 - Recommendations for the future
Team Members

- Full Service environmental, facilities, infrastructure, and military munitions response firm
- Under contract with USAESCH for UXO/MEC projects since 2000

- US Army Engineering and Support Center, Huntsville
- Contracted by Directorate of Ordnance & Explosives
- Analysis by Geographic Information System (GIS) Team in Environmental Branch.
RECON Projects Completed

- Fort A.P. Hill, VA
 - UAC / Shoot House
- Fort Benning, GA
 - IPBC, MRF5, SGR1, FM2, and SGR2
- Fort Bliss, TX.
 - IPBC, UAC, DMPRC, DMPTR, and MPMG
- Fort Bragg, NC
 - DMPRC AVN
- Fort Hood, TX
 - CACTF, DAQR, DMPTR, QTR, and SQR
- Fort McCoy, WI
 - CACTF and SDR
- Fort Riley, KS
 - Trench, DMPRC and DMPTR
- EUSA Rodriguez, Korea
 - DMPTR
- Schofield Barracks, HI
 - CACTF, MOUT LF UAC Shoot House, and QTR
- Fort Stewart, GA
 - CACTF, DMPRC, and DMPTR
- Fort Irwin, CA
 - MOUT
- Fort Carson, CO
 - CACTF and DMPRC
Project Execution

- Development and Planning
 - Develop and customize handheld tools and forms
 - Design preliminary survey coverage for client approval

- Field Effort
 - Setup PDAs with GIS data and site specific dropdown lists
 - Deploy field teams onto the site
 - Process and conduct QA/QC of collected data daily
 - Produce status maps and make appropriate PDA revisions

- Data Analysis and Interpretation
 - Compile all daily datasets upon field demobilization
 - Analyze datasets and develop prediction models
 - Produce maps series and document processes used

- Model Evaluation
 - Evaluate predicted results against actual removal data
 - Analyze findings and discuss future course of action
Development and Planning

- **System Development goals**
 - Conduct all field work digitally
 - Easy-to-use for varied workforce
 - Collect necessary data for analysis
 - Reduce data entry using menus
 - Take corresponding photographs
 - Relatively light-weight and rugged
 - Powered to last in excess of 8 hours

- **Preliminary Planning**
 - Train field crews on collection techniques
 - Configure system appropriately for site
 - Planning for required coverage
 - Test system before deployment
Field Effort

Field teams Deploy for RECON

- Test equipment daily to ensure proper working order
- Follow planned routes and deviate only when necessary
- Locate, record position, and photograph surface items
- Count and record subsurface anomalies at regular intervals
- QC / QA Daily
- Update transects in PDAs removing those already completed
- Produce daily progress maps for client and field teams
Data Analysis and Interpretation

- **Prepare Data for Analysis Input**
 - Final QA/QC of raw field data
 - Calculate counts (per acre units)

- **Produce Prediction Models**
 - Use per acre counts for subsurface anomaly estimation grid creation
 - Use surface item counts for surface item estimation grid creation
 - Upon reality check, output values may require manipulation

- **Data Assembly Tasks**
 - Link photos with surveyed items
 - Format data into accepted standard
 - Prepare maps displaying results
Types of Data Captured

- GPS Grid Lines (Transects)
- Individual Points Data
 - Number Sub-surface Hits
 - Number of Surface Hits
 - Surface Hit Types & Quantity
 - Ferrous or Non-ferrous
 - UXO, DMM, MD, or CD
 - Nomeclature or Attributes of UXO (40mm, 125mm, flare, rockets)
 - Picture ID
 - Vegetation
 - Notes or Additional Description
Model Flow Diagram
Model Evaluation

- Determining the Models Accuracy
 - Compare predicted values to actual results from removal
 - Develop program that would automate evaluation process

- Current Results
 - Fairly accurate for total counts within removal area
 - Predicted 128,206 Anomalies
 - Conducted 92,968 Digs
 - A prediction in excess of 35,238
 - Sub-area predictions fluctuated significantly
 - On average predicting values in excess by 73
 - Values ranged from shortages of 1176 to excesses of 1167
RECON Applicability

- Currently Acceptable Uses
 - General site layout and area avoidance
 - Small scale contaminant mitigation costing
 - Identifying spatial trends of contamination
 - Overall site comparisons for more educated spending

- Unproven / Unadvisable Uses
 - Determining large scale contamination estimates
 - Least cost path analysis for utility trenching
 - Site engineering for least cost layout design
 - Assigning risk levels based solely on predicted levels
Development and Planning - Challenges

- **Preliminary Planning Challenges**
 - Keeping all team members on task with client expectations
 - Knowledge of Site geography was limited
 - GPS accuracy and transect separation
 - Testing equipment for extreme field conditions

- **System Development Challenges**
 - Assembling software and hardware solution
 - Technical limitation of hardware
 - Data output from system conforming to standards
 - Capturing adequate data for analysis and modeling
Development and Planning - Lessons Learned

- **Preliminary Planning Lessons Learned**
 - Communicate requirements and goals to all team members
 - Convey technical approach to client to ensure goals are met
 - Include GIS staff in planning stages and costing
 - Collect all possible data sources to establish survey transects
 - Keep GPS limitation in mind when creating survey transects
 - Document equipment performance in different environments

- **System Development Lessons Learned**
 - Standardize equipment to eliminate system variability
 - Using attached camera could crash system
 - Long menus impeded system processing speed
 - Collect only vital data to limit processing time
 - Engineer system for data standards compatibility
 - Programmatically force data entry to limit data gaps
Field Effort - Challenges

- **Personnel Challenges**
 - New set of contamination terminology
 - Change from normal operating procedures
 - Maintain core team members
 - Field team members technology savvy

- **Equipment Challenges**
 - Vegetation tangled and damaged cords
 - Battery life and camera failure
 - Data loss from system failure
 - Maintaining data integrity

- **Situational Challenges**
 - Actual distances exceeded planned routes
 - Reduced production from range conditions
 - Weather and terrain related errors and limits
 - Incomplete site communication coverage
Field Effort - Lessons Learned

- Personnel Lessons Learned
 - Maintain all team members proficiency with the system
 - Maintain consistent field team members

- Equipment Lessons Learned
 - Use rugged and waterproof equipment whenever possible
 - Carry backup batteries for all equipment
 - Consistently backup data throughout day
 - Devise equipment backup plan for failures

- Situational Lessons Learned
 - Cover planned transects for adequate model input
 - Use analog positioning for GPS coverage failures
 - Develop protocols for various weather and terrain
 - Set production goals based on actual field conditions
 - Bring multiple communication devices
Data Analysis and Interpretation - Challenges

- **Data Preparation Challenges**
 - Data QA/QC was hard from the office
 - Some per acre counts created high results
 - Various input data did not fit the model
 - Unordered photos created problems

- **Prediction Model Development Challenges**
 - Ambiguous terminology used in scope of work
 - Data interpretations produced erroneous results
 - Model changes led to spurious conclusions
 - Assumptions caused model fluctuations
 - UXO techs search for items regardless of location
 - Model validation not planned to verify accuracy
Data Analysis and Interpretation - Lessons Learned

- **Data Preparation Lessons Learned**
 - Have data manager on site to conduct daily QA/QC
 - ID bad data and exclude or correct before further analysis
 - Define acceptable limits for reporting and analysis

- **Model Development Lessons Learned**
 - Have client approve analysis methodologies ahead of time
 - Examine how input variables can alter data output
 - Stress the importance of data collection standards to team
Model Evaluation - Challenges

- Inherent Inaccuracies
 - Rounding / estimation of removal records
 - Surface items not counted during removal
 - Limitations of physical site characteristics
 - Surface debris masking subsurface counts
 - Human error

- Equipment
 - Equipment differences between RECON and removal work
 - Clearance depth and limitation of anomaly detection devices
 - Accuracy of GPS used in RECON effort
Model Evaluation - What’s Next?

- **Recommendations for Future**
 - Compare results as removal work occurs at RECON sites, and determine any disparity
 - Research potential improvements to model
 - Revise methodologies for RECON and removal efforts
 - Incorporate previous range type, and future range type into prediction model
 - Incorporate OE Risk model with Recon Risk (Encountering) model to automate process
Overall Recommendations

- **Procedural**
 - Establish data requirements early
 - Force data collection to match project requirements
 - Continue to revisit and modify processes
 - Between projects, allow time to train team on known issues and process improvements
 - Ensure field teams understand how small data variances on the front end may impact the data results on the back end
 - On-site data manager role

- **Equipment**
 - Fully train team on HW/ SW components
 - Invest in rugged equipment

- **Contractual**
 - Clear understanding of client needs vs. SOW requirements
QUESTIONS?
Contacts

Tommy J. Hunt
- GIS Team Leader
- Tommy.J.Hunt@hnd01.usace.army.mil

Timothy B. Burkett
- GIS Manager
- tburkett@zapeng.com

Clay R. Perry
- GIS Analyst
- cperry@zapeng.com