

Concepts of Geographic Analysis

Mike Sweeney

Parts of a GIS System (my definition)

- Data collection
- Data storage and retrieval
- Data maintenance
- Geographic Analysis and Modeling
- Presentation Maps and reports

Geographic Analysis Examples

Census Block Groups Distance to Roads Land Cost **Distance to competitors**

Where is the best location for a store?

What is the closest fire hydrant to each building?

How many people are within a contamination zone?

the

over

Analytic process

Five steps of the analytic process

Framing the question

- What information is needed?
- How will analysis results be used?
- Who will use the results?
- Be specific.
 - Helps to determine methods and data to use
 - Helps to know how to present the results
- Example: What percentage of the forest is in the watershed?

Understanding your data

Know what features and attributes you have.

- Type of features determines method.
 - Discrete versus continuous
 - Additional data required by specific methods
- Type of attributes determines type of analysis.
 - Attributes describe and identify features.
 - There are categories, ranks, counts, amounts, and ratios.
- Know what you must obtain or create.

Choosing a method

Method: Process(es) used in GIS to get information

Which method to use based on

- Original question
- How analysis results will be used
- Efficiency and effectiveness

Many ways to achieve results

- Research and test to determine most efficient option.
- Determine which option provides the most accurate information.
- Document your workflow.

Processing the data

- Use a method to perform the necessary steps in GIS.
- Understand all concepts that are being used.
 - Examples: Spatial joins, buffers, and intersects
- Understand the context for choosing required analysis parameters.

Buffer value set to 0.1 mile. Intersect determines crimes within 0.1 mile buffer of school.

Important because most children within 0.1 mile walk to school

Looking at the results

- How will results be displayed?
 - Map, values in a table, charts, and so on

Evaluation of results

- Determine if information is valid and useful.
- Determine whether to rerun analysis with different parameters.

Additional considerations for results

- Information to include on map
- How to group attribute values for best effect

Attribute Selection

Select By Attributes	<u>?</u> ×	
	Query Wizard	
Layer: quake	•	
Method : Create a new selection	•	
Fields: [HURRICANE_] [TORNADO_IN] [HAIL_INDEX] [HAIL_INDEX] [QUAKE_INDE] [QUAKE_INDE] [Shape_Length] [Shape_Area] [composite] SELECT * FROM hazard_counties WHERE: [QUAKE_INDE] > 200	Unique sample values 9 10 11 12 13 14 15 16 17 Complete List Save	

Spatially related features

- Examples:
 - Disjoint
 - Touching
 - Crossing
 - Overlapping
 - -Within
 - Contains
 - Equals

Spatial Join

- Like joining tables, but the common column is "shape"
- Example:
 - -Join crime locations to the blocks in which they lie
 - Use the joined table to analyze crime levels

Modeling spatial problems

Models help understand and solve complex problems

What is a model?

Any representation of a real or hypothetical object or process that portrays, simulates, or predicts its properties or behavior.

Model Examples

- A model airplane
- Chemical "tinker toys"
- A hazard map
- An analysis of site suitability
- A groundwater pollution model
- A property value estimation

Binary suitability models

- Use for simple problems
- Advantages:
 - Easy
- Disadvantages:
 - No "next-best" sites
 - All layers have same importance
 - All good values have same importance

Data types and math in modeling

Valid math depends on the data type.

Туре	Examples	Legal math
Nominal	ID, Land-use code, Phone number	=
Ordinal	Importance, Order of completion	<, =, >
Interval	Time of day, Temperature	<, =, >, +, -
Ratio	Age, Distance, Weight, Counts	<, =, >, +, -, *, /

• Туре	Examples	Legal math
Nominal	ID, Land-use code, Phone number	=
Ordinal	Importance, Order of completion	<, =, >
Interval	Time of day, Temperature	<, =, >, +, -
Ratio	Age, Distance, Weight, Counts	<, =, >, +, -, *, /

Weighted Suitability

Used to quantify suitability

- Advantages:
 - Inputs not restricted to yes/no values
 - Results are ratings instead of yes/no values
- Disadvantages:
 - Preference assessment is harder
 - Requires RATIO data!
 - Easy to make erroneous assumptions about data

Weighted suitability method

- Classify layers into the same suitability scale
 e.g. 1-9 (9 = best)
- Weight and add together:

Ski = ([snow] * .5) + ([slope] * .3) + ([sun] * .2)

Analysis Can Get Complicated – Use Model Builder

Network Analyst

Extension for analyzing transportation networks

- Five network solvers
- Uses network datasets

Network Analyst handles turns, oneways, and multimodal networks

Surface Analysis

- Surfaces can be made from RATIO or INTERVAL data
- Elevation
- Temperature
- Population density
- Land value

3-D Analyst

Representing a surface as a Terrain

Visibility Analysis

Spatial Analyst

Spatial Analyst Tools

Hillshade

Using Map Legends

	Untitled - ArcMap - ArcI	info	
	Eile Edit View Insert Sele	ction <u>T</u> ools <u>W</u> indow <u>H</u> elp	
] D 😅 🖬 🎒 X 🖻	n 🛍 🗙 🍋 🗠 🔶 1:232,19	3 🔽 🛃 🔊 💦
	Spatial <u>A</u> nalyst 💌 Layer	elevation	溯 📐
	Layers		
Constal Course Eutons Diselan Sumbology Fields Liens & Polates			
Show: Unique Values Classified Stretched		LETANA S.	ALL L
Color Value Label 65535 High: 65535 University		2 Henry	
Color Ramp:	•	and so the	
Stretch Type: Custom	▼ Histogram	2 Beech	
	Invert	■ D © 4 483156.54	220154.53 Meters
Display Background Value:	0 as 🔽		
Display	y NoData as 🔤 🗸 🗸		
OK	Cancel Apply		

Put the Sun in the North or the Landscape appears inverted!

Solar Radiation Analysis

NetCDF Format Handles Multiple Dimensions

Interpolation

- 3D Analyst
- Spatial Analyst
- Geostatistical Analyst

Geostatistical Analyst

Errors in interpolation

Exploratory Data Analysis

Example: Predicting land value

- Predicted value =
- A0 + A1N1 + A2N2 + ...
- Use comps to create regression equation
- Apply regression equation to predict the value of other parcels

Create Response Surfaces

Putting the location into location, location, location

- Neighborhood codes are not good enough
- Property values respond to much more subtle spatial variations

Interpolating a land value surface

- A land value surface shows underlying land value as hills and valleys
- This surface can be used as a component of the land value estimate
- Surface modeling is useful for estimating how land value trends change spatially

Evaluate Residuals

Map residuals between regression model predictions and sales

- ASR Assessed value/sales ratio
- Interpolate these residuals to a surface
- Refine the model to reduce these residuals

Model Calibration

- Calibration is the process of tuning a model to produce accurate results
- Three main sources of error
 - -Omitting important factors
 - Applying incorrect mathematical methods to represent the subject phenomenon
 - Errors in weights or coefficents

Sensitivity Analysis

- Sensitivity Analysis is the process of systematically determining the importance of each factor to the overall accuracy of the model
- Artificially adjust each factor and see how much the overall result is affected
- Concentrate your modeling and data collection effort on the most important factors

Present data to confirm your model

- Visualize data to apply "common sense" confirmation to your model
- Visualize the results to see if they are reasonable
- Compare different model scenarios as surfaces

To learn more

There are numerous sessions on geographic analysis

- -Friday, February 19 8:30 10:00 AM
 - Using Spatial Statistics
 - ModelBuilder An Introduction
 - Introduction to Spatial Analysis for Geospatial Intelligence
- Friday, February 19 10:30 AM Noon
 - Regression Analysis in ArcGIS

To learn more

There are a number of tutorials that come with ArcGIS Desktop

- -3D Analyst
- Geoprocessing
- Geostatistical Analyst
- -Network Analyst
- Spatial Analyst

ESRI has a large number of training classes

 <u>http://training.esri.com/gateway/index.cfm</u>

To learn more

Geoprocessing Resource Center

http://resources.esri.com/geoprocessing/

Thank you for coming.

Enjoy the rest of the conference!