

The Geographic Approach for the Nation

ESRI Federal User Conference

Washington, D.C. > February 17-19, 2010

Tracking Solutions: Sensor Data Collections and First-Chance Analysis

David Kaiser

Types of Temporal GIS Data

Dynamic


something that moves

- Planes
- Vehicles
- Animals
- Satellites
- Storms

Discrete

something that "just happens"

- Crimes
- Lightning
- Accidents

Stationary

stands still but records changes

- Weather Stations
- Traffic Sensors

Change

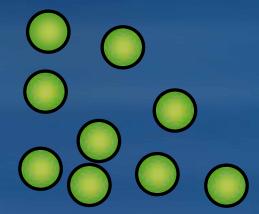
change or growth

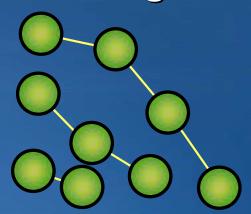
- Population
- Distribution

Time and Track Correlation

Time

Allows "Current" data to be shown

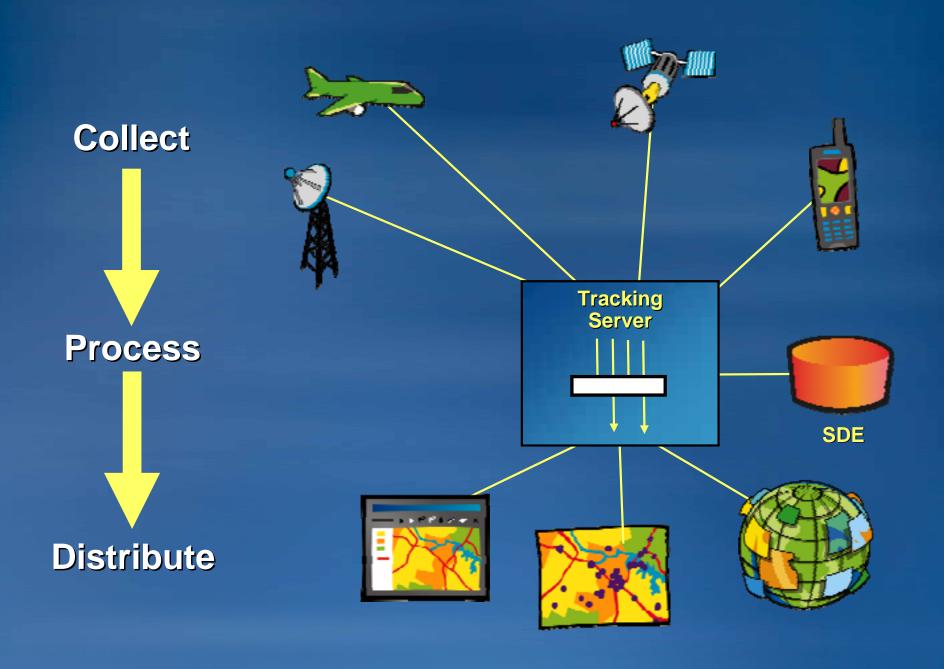

Traffic Accidents



Correlation

Allows grouping by source

Animal Migration



Tracking Server

Tracking Server – Big Picture

Temporal Processing for GIS Data

Tracking Server Functions Supporting Data Flow

Collecting

- Built-in Support for: XML, CSV
- Any protocol can be supported through custom datalink development
- Datalink & Connector SDK's for: C++, C#, Java

Processing

- "Actions" - framework to inspect or modify an observation

Distributing

- Tracking Clients subscribe to a named Tracking Service
- Tracking Server pushes updates to subscribed clients
- Web Client API's: Flash, Silverlight, Java
- Desktop Client API's: C++, C#, Java (ArcGIS Engine)

Sensor Networks

Characteristics of a Sensor Network

Low Power

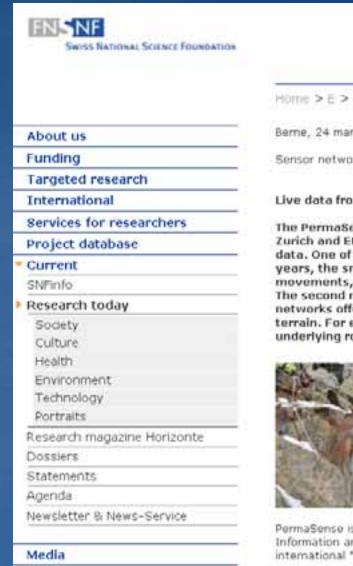
- Low cost / deployed in bulk (smart dust)
- Self organizing, fault-tolerant network
- Sensor location could be GPS linked, or set through surveying

High end

- Devices are targeted more for industrial or military use
- Multi-sensor fusion in one device (may include GPS + compass)
- Integrated with other systems (surveillance, control systems)

From low end to highly capable systems... sensors in a network usually share the communication responsibilities

Networks of Small Scale - Connected at Larger Scale


National Science Foundation (nsf.gov) – NEON Project (neoninc.org)

Types of Sensors

- Environmental
 - Sample-based: Wind, Precipitation, Temperature, Stream Gauges
 - Event driven: Lightning, Earthquakes
- Vehicles / Traffic
 - Event per vehicle then processed into samples
- Specific Object Detection Systems
 - Event driven detection: Heat, Vibration, Motion
 - Electronic Signals: Radio, RFID
- Mobile Devices

Sensor Network Example – Detecting Landslides

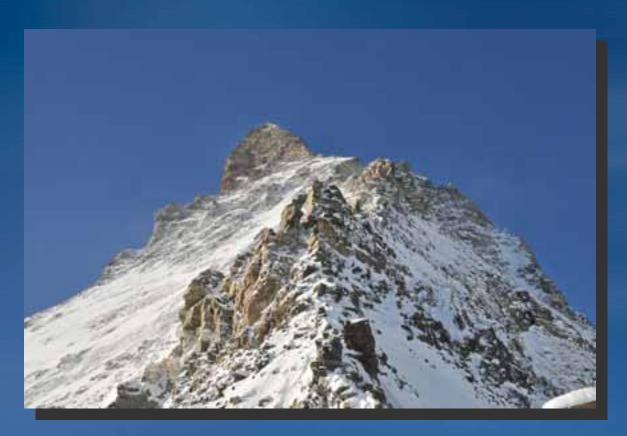
Home Contact FAQ Sitemap Glossary D F 1 search

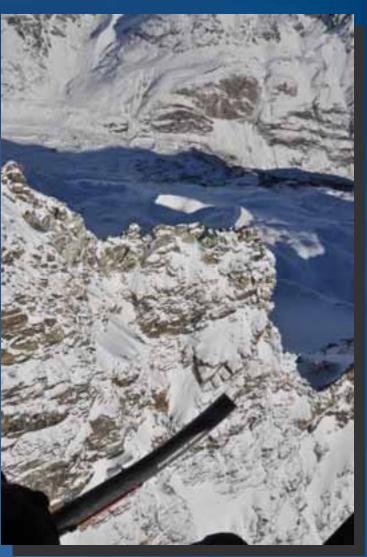
Home > E > Current > Research today

Berne, 24 march 2009

Sensor network

Live data from the Matterhorn and Jungfraujoch


The PermaSense project launched by the Universities of Zurich and Basel, ETH Zurich and EPF Lausanne operates two networks of sensors that transmit wireless data. One of these sensor networks is on the Matterhorn, Over a period of several years, the small sensors will collect a series of data that includes rock movements, freezing and thawing processes and temperatures in the bedrock. The second network is on the Jungfraujoch. The technology used by the sensor networks offers new ways of collecting outstanding-quality data in difficult terrain. For example, the data can be used to investigate the processes underlying rock falls in permafrost zones as a result of climate changes.



Jan Beutel practises maintaining the sensor network and central station on the Hornligrat (Matterhorn), 3500 metres above sea level. © Lorenz Baeckli/SNSF


Download Image

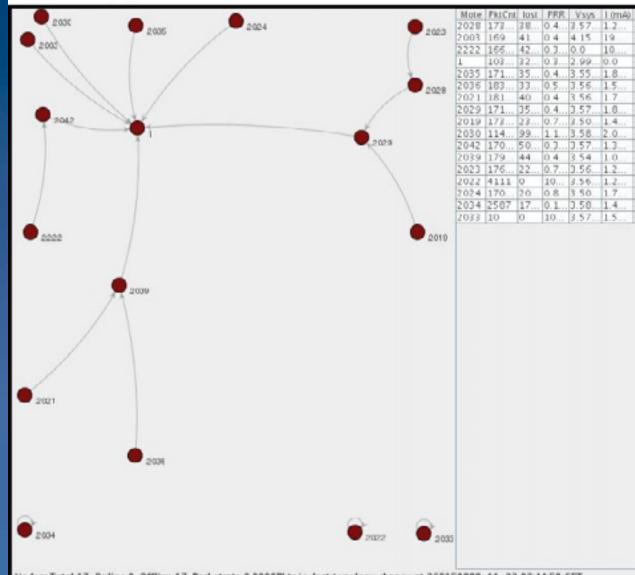
PermaSense is supported by the National Centre of Competence in Research *Mobile Information and Communication Systems*, the Federal Office for the Environment and the international "High Altitude Research Stations Jungfraujoch and Gornergrat" foundation.

Auf dem Hörnligrat am Matterhorn, 3500 Meter über Meer, übt Jan Beutel Unterhaltsarbeiten am Sensometz und der Zentralstation aus.

© Lorenz Boeckli/SNF

Abdruck mit Autorenangabe und nur zu redaktionellen Zwecken.

Sur l'arête du Hörnli au Cervin, à 3500 mètres d'altitude, Jan Beutel effectue des travaux de maintenance sur le réseau de nœuds capteurs et la s © Lorenz Boeckli/FNS

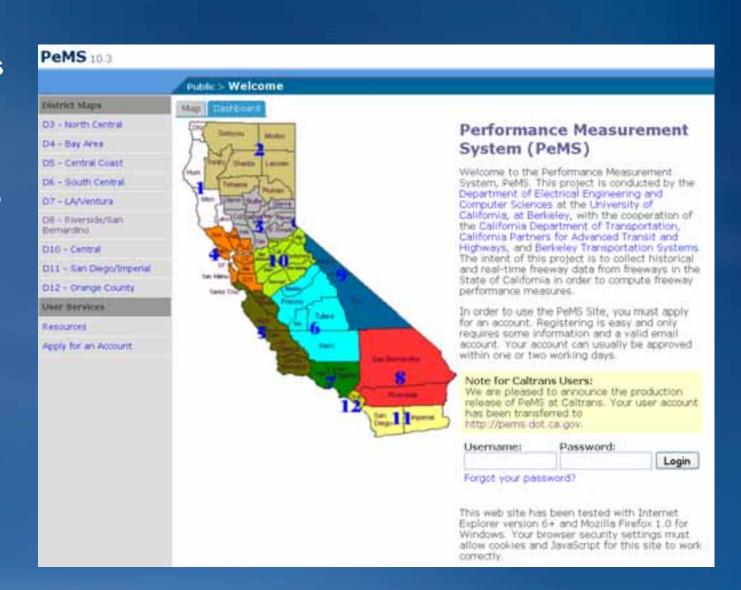

Reproduction autorisée avec mention de l'auteur et uniquement dans un but rédactionnel.

FONDS NATIONAL SUISEZ
SCHWITZERISCHER NATIONALFONDS
FONDO RAZIONALE SWIZZERO
SWISS NATIONAL SCIENCE FOLINDATION

Sensor Network Topology – Matterhorn

2010/02/16 04:01:33 MET

Mote	FktCnt	lost	PRR.	Vsys	L (mA)	Temp	Hum	Flash	uptime	genTime	tStamp
2028	173	38	0.4	3.57	1.2	-18	26	0	15655023	2010-02-15 21:1	2010-02-15 21:1
2003	169	41	0.4	4.15.	19	-17	14	0	3735956	2010-02-14 19:4	2010-02-14 19:4
2222	166	42	0.3	0.0	10	-18.51	0.1	0	48193	2010-02-15 21:1	2010-02-15 21:2
1	103	32	0.3	2.99	0.0	-3.4	17	0	48224	2010-02-15 21:1	2010-02-15 21:1
2035	171	35	0.4	3.55	1.8	-19	20	0	15656044	2010-02-15 21:1	2010-02-15 21:1
2036	183	33	0.5	3.56	1.5	-19	11	0	15655472	2010-02-15 21:1	2010-02-15 21:2
2021	181	40	0.4	3.56.	1.7	-18	18	0	15656054	2010-02-15 21:1	2010-02-15 21:1
2029	171	35	0.4	3.57	1.8	-13	21	0	3821748	2010-02-15 21:1	2010-02-15 21:1
2019	173	23	0.7	3.50	1.4	-16	24	0	15655815	2010-02-15 21:1	2010-02-15 21:1
2030	114	99	1.1	3.58	2.0	-11	12	0	2336897	2010-01-29 17.1	2010-01-29 17:1
2042	170	50	0.3	3.57	1.3	-15	26	0	15504895	2010-02-15 21:1	2010-02-15 21:1
2039	179	44	0.4	3.54	1.0	-16.87	25	0	15419006	2010-02-15 21:1	2010-02-15 21:1
2023	176	22	0.7	3.56	1.2	-16	23	0	15655123	2010-02-15 21:1	2010-02-15 21:1
2022	4111	0	10	3.56	1.2	-16	20	14411	11345079	2009-12-27 23:4	2010-01-04 19:5
2024	170	20	0.8	3.50	1.7	-17	18	0	15656781	2010-02-15 21 1	2010-02-15 21:1
2034	2587	17	0.1	3.58	1.4	-9.89	31	5094	9672973	2010-02-11 00:1	2010-01-24 14:4
2033	10	0	10	3.57	1.5	-8.2	13	7905	9743282	2010-02-10 06:4	2010-01-24 10:1


Nodes: Total 17, Online 0, Offline 17, Packetrate 0,0000Pkts/s, last topology change at 260150888-11-23 02:44:50 CET

Sensor Network Data

- Matterhorn & Jungfraujoch
- Data collected approximately once per minute
- DEMO

Sensor Network Example – CalTrans Coverage Area

- Over 30,000 sensors in 10,000 locations
- Sensor pulses are collected every 5 sec.
- 30-second sum is reported regionally
- Each region reports to CalTrans

Sensor Network Example – Weather Stations

- APRS Protocol "Amateur Packet Reporting System"
- Amateur Radio operators use this for 2-way text messaging
- Heavily used for weather beacon information

Analysis

Want to Learn More?

ESRI Training and Education Resources

- Instructor-Led Training
 - Implementing Tracking Server

Questions?

- Please fill out the Session Survey form
- Thank You!