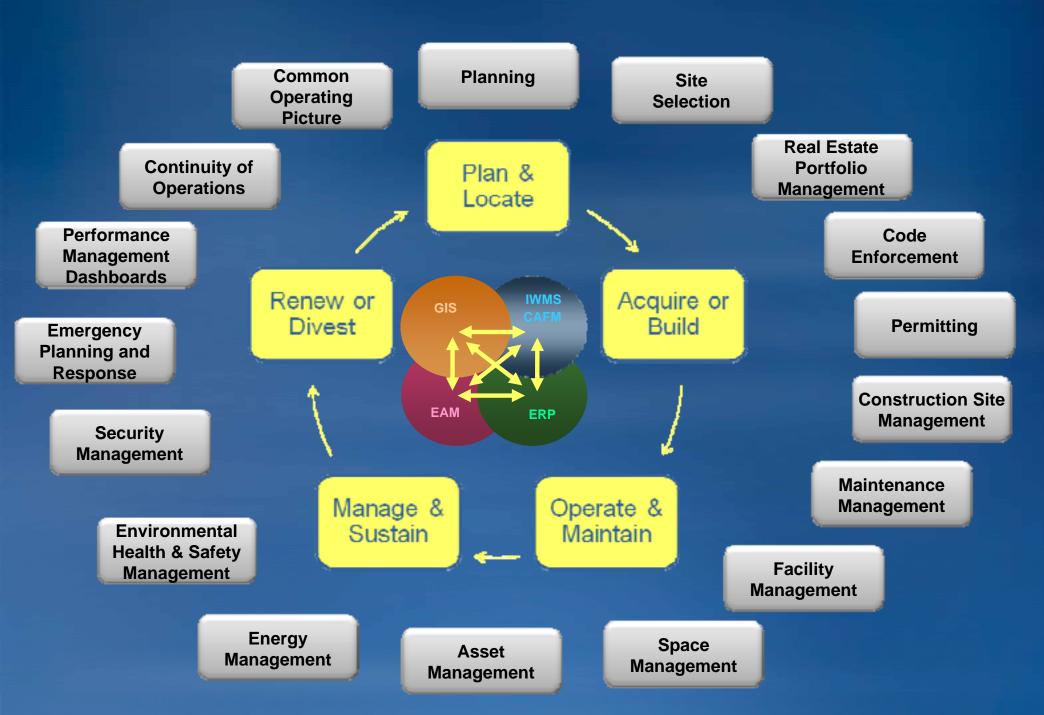


The Geographic Approach for the Nation

ESRI Federal User Conference

Washington, D.C. > February 17-19, 2010


Facilities Management Data Input, Editing and Management

Adrien Litton

Supporting the Real Property Life-Cycle

GIS Integrates the Facility Management Enterprise

What is Facilities Management in GIS?

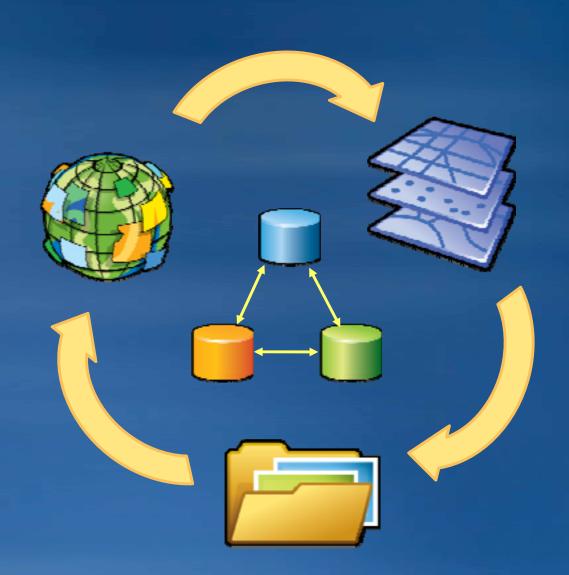
The state of the s

- Requires multiple data models
- All the problems of a local government
 - -Addressing
 - -Utilities
 - -Emergency Services
- Plus specialized needs
 - -Runways
 - –Office space

What is Facilities Management in GIS?

The state of the s

- Integration with multiple systems
- Portability of data
- Specialized analysis
 - -Interior space
 - -Ingress/egress
 - -Efficiency
 - -Proximity to other facilities


- Data input
 - -Development area
 - -Source data
 - -Data model
 - -Data capture

- GIS vs. CAD
- Data integrity
- Data exchange
- What about 3D?

- Data storage
- Integration
- Export
- Analysis

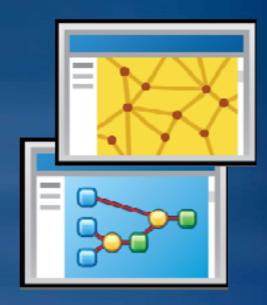
Data Input

- Choose Functional Solution Areas
 - -Master Planning
 - -Real Estate Portfolio Mgmt
 - -Maintenance Mgmt
 - -Space Mgmt
 - -Work Order/Project Mgmt
 - -Asset Mgmt
 - -Energy/Sustainability
 - –Safety & Security
- Information often crosses functional areas

Data Input

- Identify your source data
 - -Facilities with no data
 - -Paper drawings
 - Non-standard CAD drawings
 - -Standardized CAD drawings
 - -BIM files
 - Data stored in external systems
 - -Existing GIS data
- Each type of data requires its own handling method

- Facilities with no data
 - -Field data collection
 - Locate as-built drawings
 - -Photographs
 - –Automated collection (robots)
- All collection approaches are valid

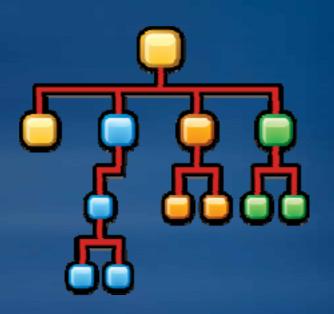

- Paper drawings
 - -Scan and batch vectorize
 - -Consider drafting individual layers
 - -Manually digitize
- Spatial reference must be considered

- Non-standard CAD drawings
 - -Identify layers
 - -Consider ETL tools
 - -Can be very complex
- If CAD files provided by contractor, consider mandate for standardized data

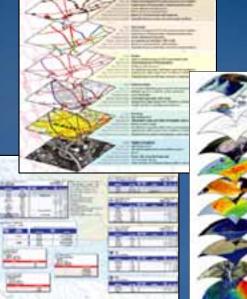
- Standardized CAD drawings
 - -Map layers to GIS
 - –One ETL to import all
- Consider benefits of importing vs. managing in CAD

- BIM files
 - Consider the exchange format
 - Custom ETLs required to import to GIS
- Data loss is a great concern when going from BIM to GIS

- Data stored in external systems
 - -Interoperability issues
 - Data synchronization problems
 - -Incompatible analysis models
- Consider whether to migrate or interoperate

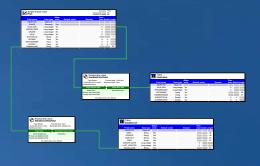


- Existing GIS data
 - -General best case scenario
 - Security and access is easier to manage
- Remember that not all functional areas are GIS-aware


Data Input

- Data model
 - Consider your target location
 - Database schema must support business rules
 - -Support source data
 - -Support application logic
- Leverage existing models
 - -BISDM
 - -Utilities
 - -Parcels
 - -Land management

GeoDatabase Data Models


Standardized Templates for Many Fields

- Address
- Agricultural
- Atmospheric
- Base Map
- Biodiversity
- Census-Admin
- Boundaries
- Defense-Intel
- Energy Utilities
- Environmental
- Forestry
- Geology
- Groundwater
- Health

Thematic Layers

- Historic Preservation& Archaeology
- Homeland Security
- Hydro
- IHO
- Land Parcels
- Local Government
- Marine
- National Cadastre
- Petroleum
- Pipeline
- Telecommunications
- Transportation
- Water Utilities
- Building Interior Space

www.esri.com/fm

Geodatabase Entities

- Object Classes
 - -Collection of attribute rows and columns
- Feature Classes
 - -Collection of spatial features
- Feature Dataset
 - -Collection of like feature classes
- Topology
- Relationship Classes
- Raster Dataset
- Annotation
 - -Feature Linked and Stand-Alone

Object Classes

- Tables
- Stores non-spatial data
- Can have behavior
 - -Subtypes
 - -Domains
 - -Default Values
- Examples:
 - -Master Address File (MAF)
 - -Street Name Dictionary (SND)
 - -Special Address File (SAF)

Feature Classes

- Stores geographic data
- Stores geometry in SHAPE attribute
- Collection of similar features
 - -Same geometry type
 - -Same attributes
 - -Same spatial reference
 - -Same behavior
- Examples:
 - -Centerline
 - -Buildings
 - -Administrative Boundaries

Feature Dataset

- Collection of feature classes that have
 - -The same spatial reference
 - -Explicit spatial relationships (i.e. topology, transportation network)
- Supports multiple geometry types
- Not intended to be a container for logical organization of data with similar themes

Topology

- Topology rules describe the spatial interaction between features
- Features participating in topology must be in the same feature dataset
- Topology rules are enforced during data validation and when editing using the topology editing tools
- Examples:
 - Election District boundaries must be coincident with centerlines
 - Intersection points must connect to centerline endpoints

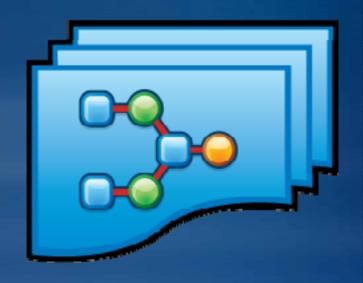
Relationship Classes

- Persistent link between feature and object classes
- Stores:
 - Origin and destination tables
 - origin and foreign keys
 - -Cardinality (1:1, 1:*, *:*)
- Differ from joins and relates in that they are not linked to an ArcMap document
- Traversed in ArcMap through the identify dialog
- Examples:
 - Streets have names
 - Common places have street centerline segments
 - Complexes have access points

Annotation Classes

- Support Annotation Classes
 - Different types of anno can have different properties
- Feature Linked
 - Related to a spatial feature class via relationship class
 - -Dynamically updated
 - Annotation Value
 - Position
 - -Can be created from labels
- Stand Alone
 - Independent from other entities

Subtypes


- A way of classifying features to a smaller level of granularity within a feature class
- Applicable to features that...
 - -Share Attribution Scheme
 - -Share Geometry Type
 - -Differ in their specific characteristics
- Designing features to use subtypes is preferable to designing multiple feature classes (performance)
- Example:
 - Centerlines can be
 - Streets
 - Highways
 - Ramps
 - Bridges

Domains

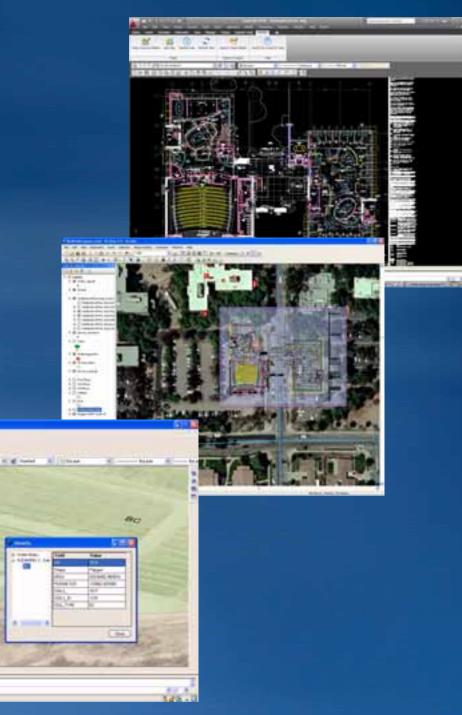
- Valid value list similar to a look-up table
- Stored as a geodatabase property
- Applied to attribute columns
 - -Can be applied to multiple fields
- Different subtypes can be assigned different domains
- Default domain values can be assigned
- Split/Merge Policies
- Examples:
 - -True or False: Yes/No
 - Direction: N/S/E/W/NW/SW/NE/SE

Data Input

- Multiple data capture methods
 - -Field collect
 - -Digitize
 - -Scan
 - -Extract, Transform, Load (ETL)
 - -Integrate
- Do what makes most sense
 - -Field collect when nothing exists
 - Scan/digitize when GIS is primary target
 - -Integrate when managed externally

- GIS vs. CAD
 - -Sometimes easier to edit in CAD
 - -ArcGIS for AutoCAD
 - -Maintain in CAD
 - -Analyze in ArcGIS
- Think about where the data normally lives

- Data integrity
 - -Redundancy causes synch problems
 - -Topology rules only work in GIS
 - -Consider who is editing the data
 - -Consider replication vs. export
- Data integrity is the responsibility of the most critical stakeholder



- Data exchange
 - –Multiple exchange formats can be problematic
 - Integration with external systems requires management
- It is a general best practice to maintain data in its native system and leverage it in GIS
- You must decide which system is native

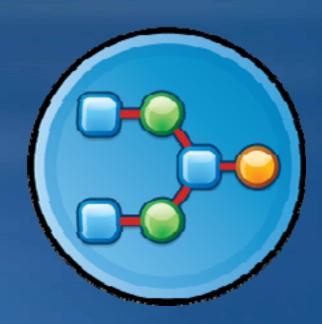
ArcGIS for AutoCAD

- Maintain data in native format
- Map attributes to GIS schema
- Perform analysis in GIS

- What about 3D?
 - Do you really need to store your data in 3D?
 - Extruded 2D is sufficient for most analysis
 - -3D editing tools are limited
 - 3D editing is difficult and time consuming
- Consider your 3D requirements
 - Is the exact height of a plug or switch needed?
 - Do you need to show windows, doors and other fixtures realistically?
 - Are you performing analysis based on real 3D?

- Data storage
 - -RDBMS
 - -Replication
 - -Users/Roles
 - -Security

- Export
 - -Formats
 - -Transformation
 - -Analysis models
 - -Potential data loss
 - -Synchronization


- Data Integration
 - -External system requirements
 - -Formats
 - -Access
 - -Synchronization

- Analysis
 - -Leverage external data
 - -ArcGIS for AutoCAD
 - -Model builder

Summary

- Data input
 - Consider your source
 - Consider your target
 - Develop a database schema that addresses your business rules
- Data editing
 - Maintain data where it makes the most sense
 - Leverage GIS where GIS power is crucial
 - Maintain non-spatial data in its native system
- Data Management
 - Think about how your users need to access the data
 - Work with providers of external systems they can play well with GIS

Links

- ESRI's Main Web Site:
 - http://www.esri.com
- ESRI Customer Support:
 - <u>http://support.esri.com</u>
- ESRI Services:
 - http://www.esri.com/services.html
- ESRI Training:
 - http://training.esri.com/gateway/index.cfm
- ESRI ArcGIS Resource Center:
 - <u>http://resources.esri.com/gateway/index.cfm</u>
- ESRI data models
 - http://support.esri.com/index.cfm?fa=downloads.dataModels.matrix
- Building Interior Space Data Model:
 - http://www.bisdm.org
- BISDM Download:
 - http://support.esri.com/index.cfm?fa=downloads.datamodels.filteredg ateway&dmid=44

Questions?