OFC Geographic Information System (GIS) Prototype

Ms. Christa Gunn
Office of the Federal Coordinator
Anchorage, AK
ESRI Federal User Conference
February 19, 2010
- OFC Roles and Responsibilities
- Overview of Project
- Prototype
 - Requirement
 - Data Integration
 - Access
 - Applications
- Path Forward
OFC Roles and Responsibilities

- Coordination
- Compliance
- Information Source

Mission Statement
Advance our Nation’s energy, environmental and economic security by expediting the delivery of clean natural gas from the North Slope of Alaska to North American markets
US Federal Agency Interaction

- Office of Federal Coordinator
- Council on Environmental Quality
- Federal Energy Regulatory Commission
- Department of Interior
 - BLM
 - BIA
 - FWS
 - MMS
 - NPS
 - USGS
- Department of Energy
- Department of Transportation
 - FHWA
 - PHMSA
 - FAA
- Department of Treasury
- Department of State
- Department of Defense
 - USACE
 - USAF
- Department of Commerce
 - NOAA
 - NMFS
- Department of Homeland Security
 - CBP
 - TSA
 - USCG
- Department of Labor
- Environmental Protection Agency
- Department of Agriculture
- Advisory Council on Historic Preservation
- Department of Justice
- Federal Communications Commission
Coordination

- **Federal Agencies and the Administration**
 - Regular Interagency Meetings
 - Summer Visits and Briefings
- **State of Alaska**
 - Weekly Meetings with Permitting Staff
 - Surveillance and Monitoring Agreement
- **Canada**
 - Meet with Canadian Ministers, Senior Staff
 - Meet with U.S. and Canadian Ambassadors
- **Applicants**
 - Level playing field
Pipeline Applicants

- **Denali**
 - Pre-filed with the Federal Energy Regulatory Commission (FERC)
 - Filing Open Season package Apr 2010
 - Offering route from North Slope to Alberta

- **Alaska Pipeline Project**
 - State License - AGIA
 - Pre-filed with FERC
 - Filed Open Season package Jan 2010
 - Offering route from North Slope to Alberta or Valdez
Alaska Gas Pipeline Projects
What’s Known

- Competition to build this project

- **Economic benefits huge for America**
 - Thousands of jobs on the table
 - Privately financed

- Long term market for all domestic natural gas

- **Multiple environmental benefits**

- **Infrastructure - minimize land use impact**
 - Current route utilizes existing Rights-of-Way

- Achievable project
OFC Initiatives

- Gap Analysis
- Consolidated Implementation Plans
- Senior Intergovernmental Management Team and Interagency Meetings
- Technical Team
 - Share engineering information and expertise
- Permit/Authorization Matrix
- Geographic Information System (GIS) Prototype
Prototype Need and Challenges

- Agencies use different sets of incompatible data and systems when studying the pipeline route.
- Lack of a good, authoritative basemap to reference information relevant to permitting.
- Much good data, but interrelation can be challenging.
- Difficult for public to understand data picture from multiple sources.
Goals

- Establish an authoritative basemap and GIS for referencing data
 - Provide a common standard and reference system
 - Single location to store/integrate historical data

- Provide transparent access to the public, agencies, stakeholders, applicants and OFC
 - Create web-based access to the data

Demonstrate that the GIS prototype is an authoritative, consistent, and integrated source of information to construct, operate, and maintain the pipeline
OFC GIS PROTOTYPE

DATA INTEGRATION
GIS is a Database
Basemap for GIS Prototype

- **Light Detection and Ranging (LiDAR) Basemap:**
 Gives users an overview of broad, continuous features that would be otherwise indistinguishable

- **LiDAR Specifications**

- **LiDAR Benefits**
 - Geohazard detection
 - Wetlands
 - Stream mapping
 - Geotechnical and
 - Engineering aspects
Importance of Data Quality

Existing data

LiDAR data
LiDAR Benefits
Bare Earth Hillshade

TAPS
Milepost 169
LiDAR Derivative Analysis with GIS - Intensity Image and Streams

TAPS Milepost 169
LiDAR Derivative Analysis with GIS - Slope
LiDAR Derivative Analysis with GIS - Slope

= BOREHOLES
LiDAR Derivatives - Streams and Topography
LiDAR Derivative - Vegetation
Data Integration - Land Status, Real Estate with Basemap

TAPS
Milepost 172--Chandalar
Data Integration - Infrastructure (roads, centerline) on Basemap

DOT Road Centerline

TAPS Centerline

TAPS Milepost 170
Data Integration - Incorporating Historical Geotechnical Data

1980 NW data
Data Integration - Geotechnical

Basemap with geo-referenced alignment sheets

Data in GIS, geo-referenced to Basemap
Data Integration - Putting the pieces together

- Contaminated zones from ADEC
- Soils information from historical data
- Borehole logs and data from historical data
- Stream crossing data
- Incorporate photos and data
GIS Repository and Web Services
OF C GIS PROTOTYPE

ACCESS TO DATA
Data Access - User Needs and Data Drive
System Requirements

Data Requirements
- GIS
- Related Data

Access Levels
- Open Public
- Agency
- Applicant

System Requirements
- Hardware
- Software
Data Access and Integration - Accessing Multiple Data Sets
OF C GIS PROTOTYPE

APPLICATIONS
Application Types

- **Web Access Application**
 - Internet browser
 - Public transparency
 - ArcGIS map document

- **Agency Web Service Application**
 - GIS layer repository
 - ArcGIS server
 - ArcMap
Web Access to Data—Browser Level
Web Service - Public Access
Data in GIS Web Service
Web Service in ArcMap
Web Service Access

- Available at all access levels: example here Web Service publishing to Google Earth
OFC GIS PROTOTYPE

HOW GIS CAN BE USED
Using the Data - Permitting

Streams
Left: Existing USGS
Right: LiDAR-derived

= EXAMPE CONTAMINATED ZONE
Improvement in Data Quality - Resolution

Topographic contours
Left: Existing USGS
Right: LiDAR-derived

= EXAMPLE CONTAMINATED ZONE
Improvement in Data Quality - Real World View of the Landscape

Orthoimagery
Left: Satellite B&W, 2008
Right: Satellite color, 2006

= EXAMPLE CONTAMINATED ZONE
OFC GIS PROTOTYPE

PATH FORWARD
Key Findings

- **Identified Need** - Authoritative basemap allows data to be integrated for multiple stakeholders
 - Restoration mitigation, infrastructure planning, environmental permitting, etc

- **Closes Gaps**
 - Mapping - LiDAR coupled with good imagery provides a value-added database
 - Visualization
 - Historical Data Integration and Storage
 - Transparency - Web application provides transparent access to data

- **Target** - Takes advantage of, and provides tool to enhance agency collaboration and efficiency
Summary

- **Next Step - Acquiring Agency Inputs**
 - Coordinate with agencies on data
 - Develop a data integration plan
 - Complete capture of historical data

- **Accomplishments**
 - Established LiDAR standard
 - Established access levels
 - Integrated historical geotechnical data
 - Proof of concept
Contact Information:
Ms. Christa Gunn, OFC, (907) 271-5244
cgunn@arcticgas.gov

Mr. Charlie Barnwell, Contract PM, (907) 273-1644
cbarnwell@mbakercorp.com

http://www.arcticgas.gov
info@arcticgas.gov

OFC Washington, DC Location
1717 H Street, NW, Suite 801
Washington, D.C. 20006
(202) 478-9750

OFC Anchorage, AK Location
188 W Northern Lights, Suite 600
Anchorage, Alaska 99503
(907) 271-5209