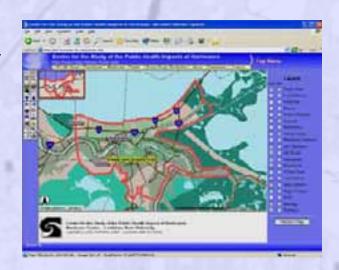
Assessing and Mitigating Public Health Risk in New Orleans: Final GIS Innovations


Binselam, Sait Ahmet Peele, R. Hampton Van Heerden, Ivor

Outline

- Introduction
- Assessing and Mitigating Public Health Risk in New Orleans: Final GIS Innovations
- Research and GIS Innovations before and after Katrina: Model Insights
- Sample Solutions for two encountered modeling problems
 - Raster Based Solution to Surge Inundation
 - Vector based solution to Zonal Statistics
- Hurricane Katrina, 2005
 Expected outcomes realized
- Hurricane Katrina, 2005
 Unexpected outcomes

Assessing and Mitigating Public Health Risk in New Orleans: Final GIS Innovations

- Pilot Project, 2002: Build a GIS portal for the New Orleans study area
 - Incorporate data and models for health, hurricane research
 - Multidisciplinary research team state, local agencies contributed
 - Study to determine public health impacts of a major event
- Hurricane Katrina, 2005
 - Research and GIS Innovations before and after Katrina: Model insights
 - Unexpected outcomes that were not built into the model

Assessing and Mitigating Public Health Risk in New Orleans – Predicted Outcomes

"Following a major hurricane in New Orleans, flooding would be the principal public health threat - stranding large numbers of the population for significant amounts of time, while subjecting a vast number of evacuees to crowded and possibly unsanitary conditions..."

(I. van Heerden, Lead Project Investigator, Advisory Board meeting minutes, 2002)

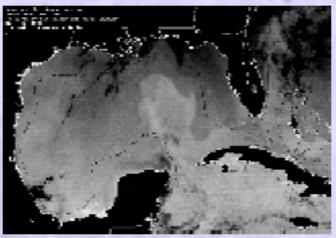
LIDAR Data

The incorporation of LIDAR data into the GIS helped researchers to visualize the areas of the New Orleans "bowl" most at risk from flooding (Binselam, Peele)

Census Data

Vulnerable populations were being identified within the city by mapping census data with other layers (e.g., socio-economic, car ownership, storm surge and elevation) (Pedro, Pine)

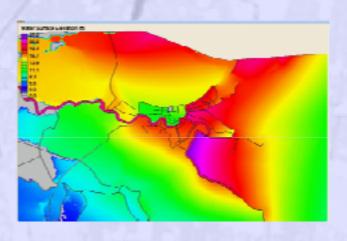
Figure 4.8 Moderate/High Risk vs. Combined Surge Inundation

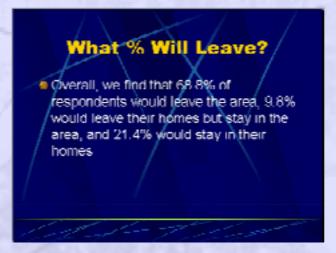

Transportation and Evacuation modeling

Studies on Hurricane Ivan Evacuation (2004) made significant improvements to contra-flow plans, resulting in greater evacuation success (Wolshon)

Remote Sensing and Imagery

Studies on Sea Surface Temperature (SST)/ Sea Surface Height (SSH) and the Loop Current were beginning to indicate when there would be greater potential for the rapid intensification of storms in the Gulf of Mexico (Walker)




Storm Surge modeling

Flooding from Lake Pontchartrain and the MRGO "funnel effect" had been modeled for Cat 3 storms; NOFD used ADCIRC surge maps to evacuate residents to higher ground (Mashriqui, van Heerden)

Population Survey Results

Preliminary survey results were indicating that as many as a third of New Orleans residents would not evacuate for Category 3 hurricane (Hurlbert & Beggs)

- ADCIRC Depth of Flooding, Hurricane Pam Catastrophic Hurricane Training Exercise, 2004 (Binselam)
- Increasing capability of incorporating study area data, high resolution hurricane research and modeling, and aerial photography and imagery in a secure, online GIS

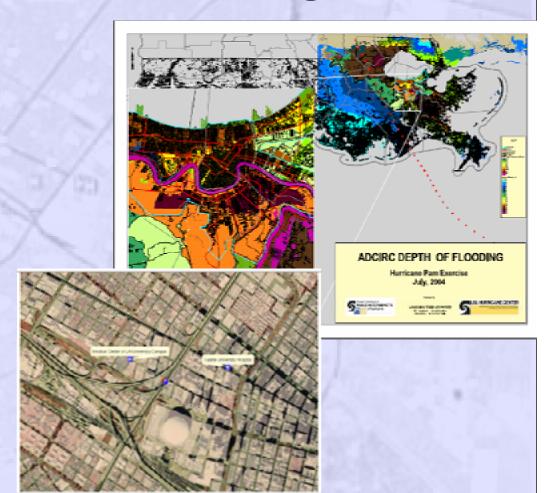
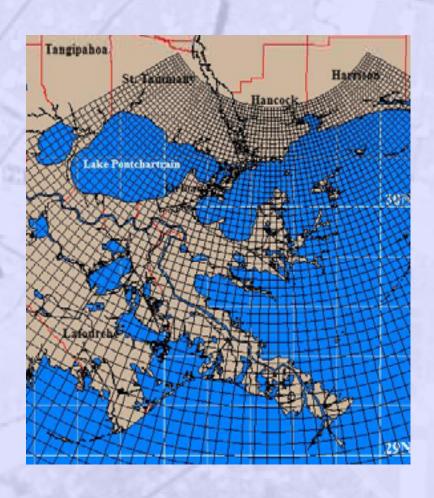
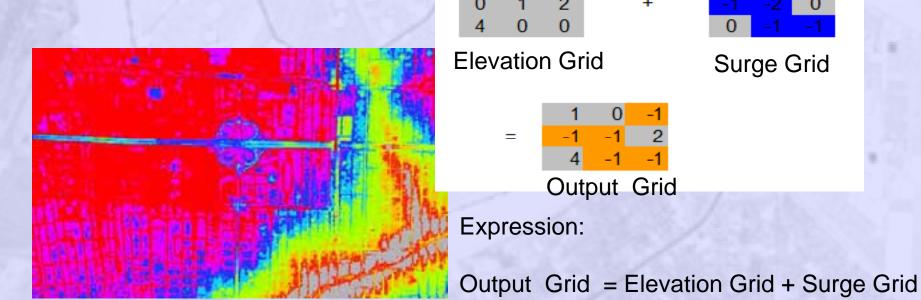



Figure 3. Hospital, parcel and roads data over high resolution panchromatic aerial photography (HPHC 05)

An Encountered Problem


- How can we interpolate SLOSH model surge over land?
 - Problems
 - very large grid cells
 - does not show over topography
 - SLOSH data have to be converted to a suitable GIS format
 - No inundation

Raster Based Solution

A possible raster base solution.

- create center points for SLOSH grid
- interpolate the data to raster
- subtract the cell values

Hurricane Katrina, 2005 Expected outcomes -- realized

- Flood deaths and injuries, lack of basic needs (food, water), and exacerbated medical conditions
- Public health impacts identified by Diaz, Hugh-Jones ranged from chronic conditions to gastrointestinal and upper respiratory conditions, etc.
- Major oil spills (Walker 2005 image from LSU Earth Scan)
- Many animals left behind, in need of shelters or rescue

Hurricane Katrina, 2005 Unexpected outcomes -- not in the model

- Levee Breach
 - Storm surge models could not simulate or build in a breach scenario, although overtopping of levees was modeled
- Wind damage was not as severe as expected in much of the city (Levitan)
- Water contamination was less than anticipated (Pardue 2005)
- Disease vector control of WNV, Dengue Fever, Malaria was not as bad as anticipated (Diaz, Hugh-Jones)

Hurricane Katrina, 2005 Unexpected outcomes -- not in the model (cont'd)

- Success of Search and Rescue
 - Flood Fatality models and estimates were luckily proven wrong, for various reasons. Mainly due to the significant military, state and local emergency responders and volunteer rescues
- High numbers of hospital, nursing home, and other medical special needs residents sheltering in place in the impact area, including many elderly and disabled.