

2008 ESRI Health GIS Conference

Washington, D.C., September 28, 2008

Introductions

Kristen Kurland

 Teaching Professor of Architecture and Public Policy

Research

-Urban Design, Economic Development, Community Participation

- -Health and the Built Environment
- -Spatial Analysis Using GIS

Teaching

- -CAD, BIM, 3D Visualization, CAFM, GIS,
- -Health Care Policy and Management
- -Infrastructure Management (Masters of Medical Management)

Co-authored with Heinz School Professor, Wil Gorr

Health Organizations using GIS

- Public Health Agencies
- Social Services
- Hospitals, Medical Groups
- Insurance Companies
- Academics

-Medical Schools, Public Health Schools, Health Policy Schools, Nursing Schools, Medical Researchers, etc.

- •Health Policy Researchers/Think Tanks
- Government Agencies

•Others?

Basic

Explore and map locations visually

Intermediate

Spatial relationships/analysis

Advanced

Complex spatial analysis

Tools

•Google Maps, Visual Earth, etc.

- ArcGIS Server, ArcIMS
- ArcExplorer WEB

Pros

- •Can be inexpensive, easy to map and access
- Show locations and visualizes health data
- Reaches large audiences

Cons

- Data might be difficult to interpret
- •No analysis

Journalist Exploring Health Data

Online News Association

Top 10 Tech Trends

•Number 3: Geobrowsing

Using the Web to Cover Healthcare

•Panel:

- -Scott Hensley, Wall Street Journal
- -Kristen Kurland, CMU
- -M. Asif Ismail, Reporter, Center for Public Integrity
- -Matt Chittum, Data Delivery Editor, The Roanoke Times

The Geography of Aging

Lead Poisoning

1	

Government Agency Providing Data

Centers for Disease Control

٠ Overweight and Obesity U.S. Obesity Trends 1985-2007 Download the Obesity Trend Maps > Introduction The prevalence of obesity is > Defining Overweight and During the past 20 years there has been a dramatic increase in depicted in a PowerPoint slide Obesity obesity in the United States. This slide set illustrates this trend presentation format.¹ (25 slides Obesity Trends by mapping the increased prevalence of obesity across each of total, PPT-1.37Mb) the states. Contributing Factors This is also available as a text-only > Health Consequences Acrobat file. 1 (PDF-1.75Mb) In 2007, only one state (Colorado) had a prevalence of obesity Economic Consequences less than 20%. Thirty states had a prevalence equal to or greater Childhood Overweight than 25%; three of these states (Alabama, Mississippi and State-Based Programs Tennessee) had a prevalence of obesity equal to or greater than 30%. Recommendations Frequently Asked Questions The animated map below shows the United States obesity prevalence from 1985 through 2007. (FAQs) Resources Percent of Obese (BMI ≥ 30) in U.S. Adults Related Topics <previous next> play stop Healthy Weight BMI - Body Mass Index 2007 Healthy Lifestyle Topics > Nutrition **CDC** Physical Activity Division of Nutrition. Physical Activity and Obesity 030 No Data <10% 10%-14% 15%-19% 20%-24% 25%-29% ≥30%

-

1	

Social Services

Adelaide Department for Families and Communities

MaplQ

- Assists with customer service
- Staff can locate appropriate services or facilities for the customer

Agency Examples

- -Housing SA *Locate* a customer in a dwelling with access to appropriate services / facilities
- Disability SA Find a Disability SA service centre that the customer can access via public transport
- -Problem Gambling Find Gambling counseling services for a client near their home
- Office for the Ageing Assist a customer with Finding a retirement village in a seaside suburb with doctor and Pharmacy services near by

MapIQ

1	

Other Examples?

Intermediate GIS

Tools

 Desktop GIS (ArcINFO, ArcView, ArcExplorer, ArcReader)

Pros

Spatial analysis

Improved modeling and planning

Cons

Software and GIS layer updates can be costly

- •Time constraints
- Requires GIS specialist
- •Can be misleading if not done properly

Local Health Department Lead Manager

 Analyzes lead poisoning in local neighborhoods compared to other demographic data

 Uses maps to show local pediatricians where trouble areas are

County Childhood Lead Study

Allegheny County, PA - Housing Data by Census Tract

Source: U.S. Census

Cases of Children with Elevated Blood Levels Compared to Housing Age

Allegheny County, PA- Housing Data by Census Tract

Map Zoomed to Neighborhoods

Elevated Blood Level Cases Compared to Income

Elevated Blood Level Cases Compared to Educational Attainment

Elevated Blood Level Cases Aggregated to Neighborhoods

1	

Weight Management Clinic Director/Staff

WMWC Recommendations

Parents can help their children lead a healthier lifestyle by altering some common behaviors, such as:

- Fast food: Limit fast food consumption to no more than once per week.
- Sweet beverages: Limit sweet beverage consumption (artificial fruit juice, regular soda, sports drinks, energy drinks and chocolate milk) to no more than one 8 oz. serving per day.
- Media time: Limit total media time (TV, Internet, video games) to no more than two hours per day.
- Lack of family meals: Have dinner together as a family at least three times per week.
- Lack of "habitual" (usual) activity: Encourage physically active "free time" activities such as walking, taking the stairs and playing sports with friends for at least 30 minutes a day.

WMWC Research Objective

To evaluate if the degree of pediatric obesity, assessed by BMI Z scores, is related to proximity to fast food restaurants or distance from parks

To determine if the effectiveness of treatment is related to the following: age, gender, race/ethnicity, number of follow up visits, and proximity to the center

Design/Methods

- •1,014 patient addresses were mapped with GIS, and then overlaid with layers showing socioeconomic, political, school, and neighborhood districts, parks, and fast food.
- •Distance buffers from the WMWC were created and overlaid with addresses and BMI Z score changes

Proximity to the center was unrelated to likelihood of follow-up visits

Travel distances (miles) compared to number of patients (all)

Proximity to the center was unrelated to likelihood of follow-up visits

Travel distances compared to number of patients with follow up visits

Proximity to the center was unrelated to success in BMI decreases

Travel distances: Z score change (.5 to 2.81) N= 8

Proximity to the center was unrelated to success in BMI decreases

Travel distances : Z score change (-.5 to -2.16), N= 38

Follow Up Visit Results

Patients with more than 5 visits showed the most improvement

Z score changes: Patients with any follow up visits

Follow Up Visit Results

Patients with more than 5 visits showed the most improvement

Age Results

Children < 5 years showed the highest mean change in a positive BMI Z score (most improved).

Age Results

The median baseline age of patients with highly improved BMI Z score changes (> -1.0) was 7.2 years

Age Results

The median baseline age of patients with highly negative BMI Z score changes (> 1.0.) was 12.8 years

Parks and Fast Food Results

Of patients with moderate BMI decrease (Z score change > -0.5)

- 43.7% live within 1200 feet of a park
- 56.3% farther than 1200 feet
- Mean distance to fast food is 1.1 miles.

Of patients with moderate BMI increases (Z score change > 0.5)

- 16.7% live within 1200 feet of a park
- 83.3% farther than 1200 feet
- Mean distance from fast food is .8 miles.

Parks and Fast Food Results

0.01 0.07 0.41 0.36 0.04 0.04 1 2 score changes 0 -2.16 - 1.01 0 - 1.00 - 0.51 0 - 0.50 - 0.10

-0.09 - 0.10

0.11 - 0.50

0.51 - 2.87

FastFood Parks

 \bigcirc

 \bigcirc

0.06

Patient Locations Compared to Fast Food and Parks

Application of Geographic Information Systems (GIS) Mapping in a Pediatric Obesity Center

Kristen S Kurland, BA, Tamara S Hannon, MD, Goutham Rao, MD, Dana Rofey, PhD, Fida Bacha, MD, Ingrid M Libman, MD PhD, and Silva Arslanian, MD Weight Management & Wellness Center (WMWC), Children's Hospital of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA

Children's ZaMC

Carnegie Mellon

1	

Other Examples?

Advanced GIS

Tools

 Desktop GIS Extensions (Spatial Analyst, Spatial Statistics, Network Analyst, etc.)

Pros

Advanced spatial analysis

Unique insight, investigations, and potential solutions

Cons

Maps must be "published" (smaller audiences)Requires advanced desktop GIS training

Researcher Studying Heart Attacks

Heart attack density map

Site Suitability Study

Query kernel density map for areas that are commercially zoned and have high density and merit a defibrillator

- Commercial area
- •25 block area
- •10 or more heart attacks every 5 years in locations where bystander help is possible

Compound Query Result

Poverty Index Model

1	

Other Examples?

- Understand application capabilities and limits
- Proper budget for project
- Provide resources for staff
- Develop collaborations
- •Others?

Kristen Kurland kurland@cmu.edu