Plastic Particle Pollution (Microplastics) – An Emerging Environmental Threat

Perceptually Invisible, Numerically Significant

CDR Bill Robberson, US EPA Region 9 – San Francisco, CA
Anna-Marie Cook, US EPA Region 9 – San Francisco, CA
Plastics Everywhere!

What we know:
Plastic Production continues to increase exponentially
- Since 1964, plastics production has increased twenty-fold, 311 million tons in 2014
- Plastics production is expected to double again in 20 years and almost quadruple by 2050.
Recycling rates for plastic packaging the last forty years remain at 5%
- After a short first-use cycle, 95% of plastic packaging material value, or USD 80–120 billion annually, is lost to the economy.

What we hear, but do not know:
- By 2050 oceans could contain more plastics than fish (by weight)
- 32% of plastic packaging escapes collection systems

Priority Concern for State and Territories – Toxicological Impacts to Food Chain/Human Health

Washington DC

Louisiana

Indonesia

San Jose, California
What risk does microplastic pollution present to human health and the environment?

Risk Assessment

Problem Formulation

What is the nature, extent, fate and transport of microplastics and associated sorbed POPs and PBTs?
- Human health risk from microplastic toxicity via Food Web / Food Chain
 - EPA R9: California / American Samoa / Marianas Islands (Guam) / Hawaii, EPA R5: Great Lakes, EPA R2: Puerto Rico
- Hawaiian Monk Seal Health in French Frigate Shoals - NW HI Islands
 - EPA R9: Hawaii / US FWS / NOAA

Characterization of Exposure and Effect

Risk Characterization
Plastic particles:

- Tend to fragment into smaller particles, increasing surface area relative to volume
- They are not inert; plastic particles readily sorb and hyper-accumulate POPs/PBTs
- Fish and birds mistake them for food - plastic acts as a transport mechanism....
 - Entrained plasticizers as well as sorbed POPs carry into the food web
 - Contaminants bioaccumulate and biomagnify within the organisms
Scientific Work Needed and Underway…

Risk Assessment

Problem Formulation
What is the nature, extent, fate and transport of microplastics and associated sorbed POPs and PBTs?

Characterization of Exposure and Effect
Methodologies Development for Extraction, Identification & Analysis

Lab/Analytical:
- Water column
- Waste water
- Sediment
- Fish Stomachs
- Fish Tissue

In-Situ:
- Water column
- Waste Water
- Sediment

Trophic Level Studies:
- Exposure
- Bioaccumulation
- Biomagnification
- Impact

Risk Characterization
Microplastics in Fish Stomachs

Stereozoom (STZ), SEM, and FTIR images and spectra of 13 x 0.2 mm PE microplastic fiber extracted from Atlantic Ocean Myctophid stomach BB14A.

Sutapa Ghosal, Jeff Wagner, Zhong-Min Wang, and Stephen Wall
California Department of Public Health
Risk Assessment

Problem Formulation
What is the nature, extent, fate and transport of microplastics and associated sorbed POPs and PBTs?

Characterization of Exposure and Effect
Methodologies Development for Extraction, Identification and Analysis

Risk Characterization
• Develop Threshold Levels for POPs/PBTs on plastics (by polymer type?) for endpoint receptors including Hawaiian Monk Seal (Mammals/Humans)
• Refine fingerprinting of POPs/PBTs on plastic to differentiate sources, in support of CERCLA removal/remedial program requirements
Time-Critical Environmental Need - Supporting EPA R9 / Hawaii / USFWS / NOAA

Tern Island, French Frigate Shoals

Concentrations of PCBs in Seawater and Higher Trophic Levels at Tern Island

<table>
<thead>
<tr>
<th>Species</th>
<th>PCB Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seawater</td>
<td>0.00449 µg/L</td>
</tr>
<tr>
<td>Coral</td>
<td>21 ng/g</td>
</tr>
<tr>
<td>Moray Eel</td>
<td>96,470 ng/g</td>
</tr>
<tr>
<td>Hawaiian Monk Seal</td>
<td>8,800 ng/g</td>
</tr>
</tbody>
</table>

How products will be used...

We need Standardized Collection, Extraction and Identification Methodologies:

- Projections of the **abundance of plastics in the oceans** are undoubtedly vastly **underestimated** and highly variable, ranging in magnitude from 7,000 – 268,940 metric tons on the ocean’s surface, a discrepancy of **several orders of magnitude**.

- **Wastewater treatment plant operators** are requesting fast-throughput, low-cost sampling and analytical methods to evaluate effluent discharge.

- Purveyors of **drinking water** from **surface water sources** want to know whether microplastics are present in the source-water.

- EPA’s **Ocean Dumping Program** wants to be able to test sediment for microplastics prior to dumping and to know whether the presence of plastic is going to present an environmental threat to ocean sites, wetlands restoration, beach augmentation, etc.

- **Sediment cleanup/remediation conceptual-site models** - (e.g. Pearl Harbor, HI; Apra Harbor, Guam) may be confounded by plastic particle presence (acting as both sources and sinks of POPs) in the sediment and water-column matrix.
Ecological Marine Units
A Three-Dimensional Mapping of the Ocean based on Environmental Data
Essential EMU Framework

A simple guide to model marine data

Build Your Mesh

Construct an empty, regularly spaced 3D mesh of points from ocean surface to seafloor covering the extent of your study area.

Attach Your Data

Attribute the point mesh with in situ observations. When the in situ points are irregularly spaced, use the Spatial Join tool and specify a match option of Intersect 3D and a search radius.

Perform Analysis

EMUs are the result of a kmeans clustering algorithm which may be repeated locally to see how a local clustering compares globally. Beyond clustering, several tools in the Measuring Geographic Distribution toolset are available.

Visualize

Use a local or global scene in ArcGIS Pro to visualize the results of your analysis. ArcGIS Pro has a rich set of 3D symbology and markers to help you visualize your analytical results.

Share Your Results

Exchange insights as a 3D web scene in ArcGIS Online or package your maps and the data referenced by the layers it contains into one portable convenient file called a map package.